RESEARCH

OBSCN undergoes extensive alternative splicing during human cardiac and skeletal muscle development

Ali Oghabian^{1,2*}, Per Harald Jonson^{1,3}, Swethaa Natraj Gayathri^{1,3}, Mridul Johari^{1,4}, Ella Nippala¹, David Gomez Andres⁵, Francina Munell⁵, Jessica Camacho Soriano⁶, Maria Angeles Sanchez Duran⁷, Juha Sinisalo⁸, Heli Tolppanen⁹, Johanna Tolva¹⁰, Peter Hackman^{1,3}, Marco Savarese^{1,3†} and Bjarne Udd^{1,3,5,11†}

Abstract

Background Highly expressed in skeletal muscles, the gene Obscurin (*i.e. OBSCN*) has 121 non-overlapping exons and codes for some of the largest known mRNAs in the human genome. Furthermore, it plays an essential role in muscle development and function. Mutations in *OBSCN* are associated with several hypertrophic cardiomyopathies and muscular disorders. *OBSCN* undergoes extensive and complex alternative splicing, which is the main reason that its splicing regulation associated with skeletal and cardiac muscle development has not previously been thoroughly studied.

Methods We analyzed RNA-Seq data from skeletal and cardiac muscles extracted from 44 postnatal individuals and six fetuses. We applied the intron/exon level splicing analysis software IntEREst to study the splicing of *OBSCN* in the studied samples. The differential splicing analysis was adjusted for batch effects. Our comparisons revealed the splicing variations in *OBSCN* between the human skeletal and cardiac muscle, as well as between post-natal muscle (skeletal and cardiac) and the pre-natal equivalent muscle.

Results We detected several splicing regulations located in the 5'end, 3' end, and the middle of *OBSCN* that are associated with human cardiac or skeletal muscle development. Many of these alternative splicing events have not previously been reported. Our results also suggest that many of these muscle-development associated splicing events may be regulated by *BUB3*.

Conclusions We conclude that the splicing of *OBSCN* is extensively regulated during the human skeletal/cardiac muscle development. We developed an interactive visualization tool that can be used by clinicians and researchers to study the inclusion of specific OBSCN exons in pre- and postnatal cardiac and skeletal muscles and access the statistics for the differential inclusion of the exons across the studied sample groups. The *OBSCN* exon inclusion map related to the human cardiac and skeletal muscle development is available at http://psivis.it.helsinki.fi:3838/OBSCN_PSIVIS/. These findings are essential for an accurate pre- and postnatal clinical interpretation of the *OBSCN* exonic variants.

Keywords Neuromuscular diseases, OBSCN/RNA splicing, Exon inclusion, Muscle development

[†]Marco Savarese and Bjarne Udd contributed equally to this work.

*Correspondence: Ali Oghabian ali.oghabian@helsinki.fi Full list of author information is available at the end of the article

© The Author(s) 2025, corrected publication 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Background

Discovered about two decades ago, the name of the gene Obscurin (OBSCN) refers to the challenges that were endured by the researchers in its initial detection and characterization [1]. These challenges were mainly caused by the large size and the relatively low abundance of the transcripts in most tissues. With 121 non-overlapping exons, OBSCN is indeed one of the genes that code for the largest mRNAs in the human genome. In human, it is expressed at highest levels in skeletal muscles, however it is also highly expressed in cardiac muscles (Fig. 1). With the relatively high number of exons, we speculate that OBSCN undergoes extensive alternative splicing, especially exon skipping. These events are known to result in different mRNAs that code for a family of proteins characterized as "obscurins" [1, 2]. The two largest OBSCN isoforms are obscurin A and obscurin B [3]. They are both characterized by a long stretch of more than 60 immunoglobulin (i.e. Ig) repeats that are interrupted by a calmodulin-binding IQ motif and several domains such as fibronectin type-III, SRC homology 3, Rho guanine nucleotide exchange factor and pleckstrin homology. The former (*i.e.*, obscurin A), which is also the smaller of the two (i.e. ~720 kDa), features a non-modular C-terminal that includes several phosphorylation sites. In contrast, the C-terminus of obscurin B (i.e. ~870 kDa) features a fibronectin type-III domain, two additional Ig sites and two serine/threonine type kinase sites (for a comprehensive review see Grogan A., et al.) [3]. Furthermore, other smaller isoforms are reported to be highly abundant in cardiac muscles. Some of these isoforms solely feature an Ig site, a fibronectin type-III site, and one or two kinase domains [3-5].

Obscurin is associated with neuromuscular functions such as myofibrillogenesis, hypertrophic response and cytoskeletal arrangements [3]. Furthermore, obscurin interacts with the giant sarcomere protein titin [6]. In fact, obscurin/titin disrupting mutations are suggested to be the cause of several hypertrophic cardiomyopathies and muscular disorders [7-9]. Despite the important role of OBSCN in the skeletal muscle development and functioning, to our knowledge, the splicing regulation of OBSCN has not yet been studied in detail. In this study, we analyzed 75 pre- and post-natal skeletal muscle and heart (i.e. 45 postnatal muscles, 7 postnatal hearts, 20 fetal muscles and 3 fetal hearts) RNAseq data. The fetal samples have been denoted with "F", and the muscle and heart samples are referred to as "M" and "H" respectively. However, to prevent confusion with "prenatal" we have labelled the postnatal samples with "A" as most of these samples are from adults. In particular, we studied the well-known isoforms of OBSCN to quantify and compare the inclusion levels of the OBSCN exons across the studied samples. This allowed us to characterize the splicing regulation of OBSCN in cardiac and skeletal muscle development by comparing pre- and post-natal samples. As the role of obscurin in muscle diseases is an emerging topic of study [8, 10], a detailed map of the splicing and the expression of various isoforms of this gene is of great importance for the correct interpretation of the effects of novel variants.

Results

The prenatal analysis consisted of analyzing inhouse RNA-Seq data from fetal skeletal muscles (n=20) and fetal cardiac muscles (n=2) from 2 different fetuses

Fig. 1 Expression of *OBSCN* in various tissues. Log₁₀ scaled expression of *OBSCN* across different tissues available in GTEX Analysis Release V8. The curves show the density of the expression values. The horizontal line within the black box shows the median. The black box plots extend vertically from the 25th to the 75th percentile. The outliers are expression levels higher or lower than 1.5 time the interquartile range. GTEx Portal (Analysis Release V8) on 09/13/23

(Table 1). Additionally, it included analyzing publicly available skeletal muscle data from a 19 weeks female, skeletal muscle data from a 22 weeks male, cardiac muscle data from a 28 weeks female and cardiac muscle data from a 19 weeks female (for more information see 'Methods'). For postnatal analysis, RNA-Seq data from an internal cohort of 44 individuals were analyzed (Table 1). We studied six OBSCN isoforms, four of which were curated mRNAs and featured NM REFSEQ IDs, i.e. ENST00000284548 (NM_052843), ENST00000422127 (NM_001098623), ENST00000570156 (NM_001271223) and ENST00000680850 (NM 001386125). Additionally, we analyzed isoforms ENST00000660857 and ENST00000493977 since they collectively featured four additional unique exons. Overall, we extracted 126 unique or 121 non-overlapping exons from these isoforms, out of which three exons were annotated as alternative first and four exons as alternative last. Additionally, the introns upstream of two exons were annotated with alternative 3' splicing (Table 2).

Exon inclusion/skipping

We measured Ψ inclusion levels of the 126 *OBSCN* exons for the 45 postnatal skeletal muscle, seven postnatal heart, 20 fetal skeletal muscle and three fetal heart samples. Heatmap (coupled with hierarchical clustering using the "Euclidean" distance) and PCA analysis of *OBSCN* exon inclusion PSI values showed that the samples did not group based on the sex and clinical diagnosis of the studied individuals (Fig. S1A,B, Additional File 1). However, overall, a clear distinction of pre- and postnatal skeletal muscles with a less distinction of pre- and

 Table 1
 Internal cohort of individuals whose biopsies were collected for RNA-seq

Sex	No. sam- ples
Μ	21
F	12
NA	13
Age at biopsy (years)	
0–4	4
5–20	7
21–60	25
>60	5
NA	5
Clinical conditions	
Unsolved myopathy	24
Myopathy with a genetic diagnosis	13
Amputees for myopathy-unrelated reasons	4
Hyperckemia without myopathology	5

postnatal cardiac muscles was observed (Fig. 2B, and Fig. S2, Additional File 1). We compared the samples in six different ways: the muscle samples to heart samples (*i.e.* denoted with M), postnatal (*i.e.* mostly from adult individual) samples to fetal samples (i.e. A), postnatal muscle samples to fetal muscle samples (i.e. AM/FM), postnatal heart samples to fetal heart samples (i.e. AH/ FH), postnatal muscle samples to postnatal heart samples (i.e. AM/AH), and fetal samples to fetal heart samples (*i.e.* FM/FH) (Fig. 2A). We plotted the average Ψ levels to detect loci within OBSCN where differential splicing was detected when fetal samples were compared to postnatal samples or heart samples were compared to skeletal muscles (Fig. 3). Furthermore, we visualized the distribution of the inclusion levels of the OBSCN exons in the studied samples (using box plots), for those exons whose at least two out of the six comparisons (Fig. 2A) produced significant results (FDR < 0.05) with $\Delta \psi > 10$ (%)(Fig. 4). It is worth noting that for three of the studied exons (*i.e.* exons 48, 53 and 56) significant results were achieved in all comparisons except when postnatal hearts were compared to fetal hearts (Fig. 4, Table S1, and Fig. S3, Additional File 1).

Extensive exon inclusion regulation was detected at several loci at the 5' end (exons 17 and 18), the middle (exons 48-57) and the 3' end of the gene (exons 97 ad 107) that were associated with skeletal muscle development (Figs. 3, 4). The inclusion (or usage) of exon 17 $(FDR(AM/FM) = 0.00104, \Delta \Psi(AM/FM) = -19.2)$ and exon 18 (*FDR*(*AM*/*FM*) = 0.00236, $\Delta \Psi$ (*AM*/*FM*) = -18.2) were noticeably lower in postnatal muscles compared to fetal muscles (Fig. 4A-B, 4S and Table S2). Interestingly, however, a similar effect was not seen in the postnatal heart compared to the fetal heart tissues (FDR(AH/FH)>0.9, $-5\% < \Delta \Psi (AH/FH) < 0\%$). This leads us to believe that the inclusion of these exons is regulated specifically during skeletal muscle development (and not during heart development). As a result of this exon inclusion decrease, upregulation of the canonical exon junctions chr1:228243458-228246528 (connecting exons 15 and 18) and chr1:228244571-228256651 (connecting exons 16 and 20) were observed in postnatal muscles compared to fetal muscles $(P(AM > FM) = 1e - 04, 0.0243\% \le \Delta \Psi$ $EJ(AM/FM) \le 0.0485\%$) (Fig. 5 A-B, Table S3).

Located in the central region of the *OBSCN* gene, exons 48–56 were included significantly less in postnatal muscles than in fetal muscles (*FDR*(*AM*/*FM*)<0.05, $\Delta\psi$ (*AM*/*FM*)<-10%) (Fig. 4). Although the inclusion levels of these exons were mostly lower in postnatal heart samples than in fetal heart samples (except for exon 52), the effects were milder and the false discovery rates were not significant (FDR(AH/FH)>0.1, $\Delta\psi$, (AH/FH)<-10%) (Fig. 4, Table S1). We believe that the reason for observing a milder

Evon	Mata	Chr. Bootin	C+	pues	ENCTOMM0284548 ENCTOMM0422127 ENCTOMM0483627 ENCTOMM065	70156 ENISTOOOO660857 ENISTOOOO68	0050 Eiret Lact avon	Alternative 0	tart	Т Ц	Domain
number	transcript exon number		5					splicing	hase	Phase	
_	-	chr1 228208044	228208185 +		1	-	TRUE FALSE				
2	la	chrl 228208063	228208185 +				TRUE FALSE			,	
m	1b	chr1 228208130	228208185 +		-		TRUE FALSE				
4	2	chr1 228211766	228212771 +		2 2 2	2	FALSE FALSE	I		-	lg #1, lg #2, la#3
5	m	chr1 228213441	228213710 +		3 3	e	FALSE FALSE	1	_	-	lg #4
9	4	chr1 228214174	228214434 +		4 4 4	4	FALSE FALSE	-	_	-	lg #5
7	5	chr1 228214790	228215098 +		5 5 5	ŝ	FALSE FALSE	1	_	-	Fn3 #1
00	9	chr1 228215563	228215829 +		6 6	9	FALSE FALSE	1	_	-	1g #6
6	6a	chr1 228215689	228215829 +		1		FALSE FALSE	1	_	-	9# 61
10	7	chr1 228216421	228216702 +		7 7 2 7	7	FALSE FALSE	1	_	-	lg #7
11	80	chr1 228217013	228217288 +		8 3	ω	FALSE FALSE	1	_	-	lg #8
12	6	chr1 228217395	228218222 +		4		FALSE TRUE	AL=chr1: 1	_		
								228359597- 228361250:+,			
								AL=Chirl: 228378618-			
								228378874:+, AL=chr1:			
								228378618- 228378876:+			
13	10	chr1 228219324	228219599 +		6	6	FALSE FALSE	-	_	-	lg #9
14	11	chr1 228224459	228224734 +		9 9 10	10	FALSE FALSE	1	_	-	lg #10
15	12	chr1 228243183	228243458 +		10 10 11	11	FALSE FALSE	1	_	-	lg #11
16	13	chr1 228244296	228244571 +		11 11 12	12	FALSE FALSE	1	_	-	lg #12
17	14	chr1 228245413	228245688 +		12 12 13	13	FALSE FALSE	1	_	-	lg #13
18	15	chr1 228246528	228246803 +		13 13 14	14	FALSE FALSE	1	_	-	lg #14
19	16	chr1 228249965	228250240 +		14 14 15	15	FALSE FALSE	1	_	-	lg #15
20	17	chr1 228256651	228256926 +		15 15 16	16	FALSE FALSE	1	_	-	lg #16
21	18	chr1 228259501	228259776 +		17	17	FALSE FALSE	1	_	-	lg #17
22	19	chr1 228264116	228264391 +		16 16 18	18	FALSE FALSE	1	_	-	lg #18
23	20	chr1 228268530	228268805 +		17 17 19	19	FALSE FALSE	1	_	-	lg #19
24	21	chr1 228271925	228272221 +		20	20	FALSE FALSE	1	_	-	lg #20
25	22	chr1 228273272	228273547 +		21	21	FALSE FALSE	1	_	-	lg #21
26	23	chr1 228273770	228274048 +		18 18 22	22	FALSE FALSE	1	_	-	Fn3 #2
27	24	chr1 228274178	228274444 +		19 19 23	23	FALSE FALSE	1	_	-	lg #22
28	25	chr1 228274572	228274841 +		20 20 24	24	FALSE FALSE	-	_	-	lg #23
29	26	chr1 228275760	228276026 +		21 21 25	25	FALSE FALSE	-	_		lg #24

 Table 2
 The studied OBSCN isoforms and exons

nu
nti
00
2
ble
Ta

Table	2 (conti.	nuec	6											
Exon	Meta	Ģ	Begin	End	Strand	ENST00000284548	ENST00000422127 ENST00000493977	ENST00000570156 ENST00000660857	ENST00000680850	First Last exon Al	lternative	Start	End	Domain
number	transcript exon number									exon s	olicing	Phase	Phase	
30	27	chr1	228276450	228276716	+	52	22	26	26	FALSE FALSE		-	-	lg #25
31	28	chr1	228276930	228277042	+	23	23	27	27	FALSE FALSE		-	0	½ lg #26
32	29	chr1	228277160	228277313	+	24	24	28	28	FALSE FALSE		0	-	½ lg #26
33	30	chr1	228277505	228277666	+			29	29	FALSE FALSE		-	-	½ lg #27
34	31	chr1	228277754	228277858	+	25	25	30	30	FALSE FALSE		-	-	½ lg #27
35	32	chr1	228278689	228278955	+	26	26	31	31	FALSE FALSE		-	-	lg #28
36	33	chr1	228279175	228279444	+		27	32	32	FALSE FALSE		-	-	lg #28 few AAs
37	34	chr1	228279821	228280087	+	28	28	33	33	FALSE FALSE		-	-	lg #29
38	35	chr1	228280179	228280445	+	29	29	34	34	FALSE FALSE		-	-	lg #30
39	36	chr1	228280530	228280796	+	30	30	35	35	FALSE FALSE		-		lg #31
40	37	chr1	228281933	228282205	+	31	31	36	36	FALSE FALSE		-	-	lg #32
41	38	chr1	228283018	228283284	+	32 .	32	37	37	FALSE FALSE		-	-	lg #33
42	39	chr1	228283503	228283769	+	33	33	38	38	FALSE FALSE		-	-	lg #34
43	40	chr1	228286078	228286350	+	34	34	39	39	FALSE FALSE		-	-	lg #35
44	41	chr1	228286773	228287039	+	35	35	40	40	FALSE FALSE		-	-	lg #36
45	42	chr1	228287694	228287960	+	36	36	41	41	FALSE FALSE		-	-	lg #37
46	43	chr1	228288061	228288324	+	37	37	42	42	FALSE FALSE		-	-	lg #38
47	44	chr1	228288625	228288888	+	30	38	43	43	FALSE FALSE		-	-	lg #39
48	45	chr1	228291898	228292161	+	39	39	44	44	FALSE FALSE		-	-	lg #40
49	46	chr1	228292523	228292786	+	40	40	45	45	FALSE FALSE		-	-	lg #41
50	47	chr1	228293353	228293616	+	41	41	46	46	FALSE FALSE		-	-	lg #42
51	48	chr1	228294152	228294415	+	42	42	47	47	FALSE FALSE		-	-	lg #43
52	49	chr1	228294780	228295043	+	43	43	48	48	FALSE FALSE		-	-	lg #44
53	50	chr1	228298454	228298717	+			49	49	FALSE FALSE		-	-	lg #45
22	51	chr1	228299259	228299522	+			50	50	FALSE FALSE		-	-	lg #46
55	52	chr1	228299882	228300145	+			51	51	FALSE FALSE		-	-	lg #47
56	53	chr1	228303675	228303938	+			52	52	FALSE FALSE		-	-	lg #48
57	54	chr1	228304303	228304566	+			53	53	FALSE FALSE		-	-	lg #49
58	55	chr1	228305123	228305386	+			54	54	FALSE FALSE		-	-	lg #50
59	56	chr1	228306372	228306638	+	44	44	55	55	FALSE FALSE		-	-	lg #51
60	57	chr1	228306901	228307167	+	45	45	56	56	FALSE FALSE		-	-	lg #52
61	58	chr1	228307259	228307531	+	46	46	57	57	FALSE FALSE		-	-	lg #53
62	59	chr1	228308111	228308383	+	47	47	58	58	FALSE FALSE		-	-	lg #54
63	60	chr1	228309099	228309295	+	48	48	59	59	FALSE FALSE		-	0	1/21g #55
64	61	chr1	228309484	228309559	+	49	49	60 1	60	FALSE FALSE		0	-	1/2 lg #55

Ð
nue
ntii
00
N
A 1

Table	2 (contin	nued)	6														
Exon number	Meta transcript exon number	ę	Begin	End	Strand	ENST0000284548	ENST00000422127 ENST	00000493977 E	VST0000570156	ENST0000660857	ENST0000680850	First La exon	st exon	Alternative splicing	Start Phase	End Phase	Domain
65	62	chr1	228313614	228313886	+					0		FALSE FAI	SE		-	-	lg #56
99	63	chr1	228314814	228315080	+					~		FALSE FAI	-SE		-	-	- Ig #57
67	64	chr1	228315847	228316119	+	50	50	9	7	4	61	FALSE FAI	-SE		-	-	lg #58
68	65	chr1	228316709	228316984	+	51	51	9	2		62	FALSE FAI	_SE		Ļ	-	lg #59
69	66	chr1	228317464	228317751	+	52	52	9			63	FALSE FAI	_SE		-	-	Fn3
70	67	chr1	228317892	228318173	+	53	53	Ý	4	-	64	FALSE FAI	-SE		-	-	lg #60
71	68	chr1	228318884	228319254	+	54	54	9	10		65	FALSE FAI	-SE		Ļ	0	
72	69	chr1	228321344	228322214	+	55	55	Q	vo	-	66	FALSE FAI	-SE		0	-	IQ, Ig #61
73	70	chr1	228323328	228323606	+	56	56	9	7	-	67	FALSE FAI	-SE		Ļ	-	lg #62
74	71	chr1	228332860	228332938	+	57	57	Q	ŝ		68	FALSE FAI	-SE		1	2	
75	72	chr1	228333199	228333323	+	58	58	Q	0	-	69	FALSE FAI	-SE		2	-	1⁄2 lg #63
76	73	chr1	228333583	228333780	+	59	59	7	0		70	FALSE FAI	-SE		Ļ	-	½ lg #63
77	74	chr1	228334512	228334544	+	60	60	7	1		71	FALSE FAI	-SE		1	-	
78	75	chr1	228334815	228334913	+	61	61	7.	2		72	FALSE FAI	-SE		1	1	½ lg #64
79	76	chr1	228335080	228335298	+	62	62	7	8		73	FALSE FAI	-SE		Ļ	Ļ	½ lg #64
80	77	chr1	228335791	228335851	+	63	63	2	4		74	FALSE FAI	SE		-	2	
81	78	chr1	228336200	228336270	+	64	64	7	2		75	FALSE FAI	-SE		2	-	1
82	79	chr1	228337004	228337126	+	65	65	7	v0		76	FALSE FAI	-SE		-	-	
83	80	chr1	228337244	228337383	+	66	66	7	7		77	FALSE FAI	-SE		-	0	
84	81	chr1	228337944	228338144	+	67	67	7.	ŝ		78	FALSE FAI	-SE		0	0	SH3
85	82	chr1	228338290	228338372	+	68	68	7	0		62	FALSE FAI	-SE		0	2	
86	83	chr1	228338853	228339026	+	69	69	õ	0		80	FALSE FAI	-SE		2	2	HO
87	8	chr1	228339945	228340101	+	70	70	00	-		81	FALSE FAI	-SE		2	0	HO
88	85	chr1	228340506	228340622	+	71	71	00	2		82	FALSE FA	SE		0	0	HO
68	86	chr1	228340724	228340888	+	72	72	00			83	FALSE FA	SE		0	0	HO
06	87	chr1	228341095	228341253	+	73	73	à	4		84	FALSE FAI	-SE		0	0	Ηd
91	88	chr1	228341437	228341614	+	74	74	õõ	10		85	FALSE FAI	_SE		0	-	Ηd
92	89	chr1	228342119	228342232	+	75	75	ō	vQ		86	FALSE FAI	-SE		-	-	1/2 lg #65
93	06	chr1	228349890	228350057	+	76	76	00	2		87	FALSE FAI	_SE		Ļ.	-	1/21g #65
94	91	chr1	228350841	228350943	+	77	77	œ	m		88	FALSE FAI	SE		-	2	1/3 lg #66
95	92	chr1	228351321	228351450	+	78	78	õ	0		68	FALSE FAI	-SE		2	0	1/3 lg #66
96	93	chr1	228352951	228353062	+	79	79	ō	0		06	FALSE FAI	-SE		0	-	1/3 lg #66
97	94	chr1	228356151	228356193	+	80						FALSE FAI	-SE		Ļ	2	

Meta transcript exon number	Chr B	fegin	End	Strand	EN ST0000 284548	ENST00000422127 ENST0000049397	7 ENST0000570156 ENST0000660857	ENST0000680850 Fir exe	st Last exon in	Alternative splicing	Start Phase	End Phase	Domain
5	chr1 2	28359597	228361250	+	8			FAI	SE TRUE	AL=chr1: 228217395- 228218222:+, AL=chr1: 228378618- 228378618- 228378618- 228378618- 228378618-	7		
96	chr1 2.	28362576	228362755	+		80	91	91 FAI	SE FALSE		-	-	ı
97	chr1 2;	28364981	228365077	+		81	92	92 FAI	SE FALSE		-	2	
98	chr1 2	28365436	228365560	+		82	93	93 FAI	SE FALSE		2	-	1
66	chr1 2.	28366074	228366186	+		83	94	94 FAI	SE FALSE		-	0	½ lg #67
100	chr1 2	28366400	228366568	+		84	95	95 FAI	SE FALSE		0	-	1⁄2 lg #67
101	chr1 2	28366808	228366889	+		85	96	96 FAI	SE FALSE		-	2	Kinase #1
102	chr1 2	28366975	228367175	+		86	97	97 FAI	SE FALSE		2	2	Kinase #1
103	chr1 2	28367886	228367946	+		87	98	98 FAI	SE FALSE		2	0	Kinase #1
104	chr1 2	28368339	228368416	+		88	66	99 FAI	SE FALSE		0	0	Kinase #1
105	chr1 2	28368722	228368894 -	+		89	100	100 FAI	SE FALSE		0	2	Kinase #1
106	chr1 2	28369136	228369162	+		06	101	101 FAI	SE FALSE		2	2	Kinase #1
107	chr1 2	28369942	228370094 -	+		91	102	102 FAI	SE FALSE		2	2	Kinase #1
108	chr1 2	28370193	228370238	+		92	103	103 FAI	SE FALSE		2	0	Kinase #1
109	chr1 2	28370679	228370756	+		93	104	104 FAI	SE FALSE		0	0	
110	chr1 2	28371023	228373081	+		94	105	105 FAI	SE FALSE		0	-	
111	chr1 2	28373932	228374012	+		95	106	106 FAI	SE FALSE		-	-	
112	chr1 2	28374314	228374424 -	+		96	107	107 FAI	SE FALSE		-	-	1⁄2 lg #68
113	chr1 2.	28374585	228374752 -	+		97	108	108 FAI	SE FALSE		-	-	½ lg #68
114	chr1 2	28375702	228375824 -	+		98	109	109 FAI	.SE FALSE		-	-	

Table 2 (continued)

Exon number

98

number	Meta transcript exon number		i I	3				exon	splicing	Phase	Phase	
118	115	chr1 228376008	228376178	+	66	110	110	FALSE FALSE		-	-	
119	116	chr1 228376793	228376874	+	100	111	111	FALSE FALSE		-	2	Kinase #2
120	117	chr1 228377052	228377291	+	101	112	112	FALSE FALSE		2	2	Kinase #2
121	118	chr1 228377489	228377712	+	102	113	113	FALSE FALSE		2	-	Kinase #2
122	119	chr1 228377931	228378006	+	103		114	FALSE FALSE	A5'=chr1: 228377937- 228378006:+	-	2	Kinase #2
123	119a	chr1 228377937	228378006	+		114		FALSE FALSE	A5'=chr1: 228377931- 228378006:+	-	2	Kinase #2
124	120	chr1 228378271	228378420	+	104	115	115	FALSE FALSE		2	2	Kinase #2
125	121a	chri 228378618	228378874	+	105			FALSE TRUE	AL=chr1: 228217395- 228218222:+, AL=chr1: 228359597- 22835150:+, AL=chr1: 228378618- 228378618- 228378876:+	7		Kinase #2
126	121	chrl 228378618	228378876	+		116	911	FALSE TRUE	AL=chr1: 228217395- 228218222:+, AL=chr1: 228359597- 22835150:+, AL=chr1: 228378618- 228378618- 228378874:+	0	1	Kinase #2

Fig. 2 Sample comparisons in our study. **A** The RNA-Seq data in our study were analyzed for splicing by comparing the muscle samples to heart samples (denoted with M), mostly adult postnatal samples to fetal samples (denoted with A), mostly adult postnatal muscle samples to fetal samples (denoted also with AM/FM), mostly adult postnatal heart samples to fetal heart samples (AH/FH), mostly adult postnatal muscle samples to mostly adult postnatal heart samples (AM/AH), and fetal samples to fetal heart samples (FM/FH). **B** Scatterplot shows the separation of the studied samples based on *OBSCN* exon inclusion PSI values, by illustrating PC1 vs PC2 (achieved from PCA analysis). The sample types have been labelled with different shapes and colours

effect in heart is the small size of the fetal heart samples, as the P-value for some of these effects are less than 0.05 even though their FDR values are not (Fig. 4 K-M). Furthermore, the inclusion levels for most of these exons (i.e. exons 48, 49, 52–56, as well as exons 57 and 58) were significantly higher in human muscle samples compared to human heart samples (*FDR*(*M*) < 0.05, $\Delta \Psi$ (*M*) > 30%), suggesting that the detection of exon inclusion variations in the cardiac muscles are technically more challenging and require more sequence reads and biological replicates (Fig. 4). Concurrent to these findings, we also noticed significant increase of several canonical as well as a few noncanonical exon junctions in postnatal muscle samples compared to fetal muscle samples (Fig. 5). The upregulated canonical exon junctions were chr1:228288888 - 228292523 (connecting exons 47 and 49), chr1:228288888 - 228293353 (connecting exons 47 and 50), and chr1:228292161-228294152 (connecting exons 48 and 51) (Table S3). The upregulated non-canonical exon junctions were chr1:228293518 - 228294318 (overlapping exons 50 and 51), chr1:228295020-228300123 (overlapping exons 52 and 55), and chr1:228300020-228303814 (overlapping exon 56) (Table S4).

We developed an interactive visualization tool for the exon inclusion Ψ values using the R Shiny package [11] which is available at http://psivis.it.helsinki.fi:3838/

OBSCN_PSIVIS/. The software allows the users to zoom into more precise regions within the *OBSCN* gene to view the distribution of the inclusion levels (*i.e.* Ψ) of the exons of interest and the measured statistics.

Alternative first/last exons and alternative 3' splicing

We measured Ψ values of the four alternative final exons (Table 2) and two alternative first exons. It is worth noting that the results for exons 126 and 125 (i.e. alternative last exons) were reported together as their differences are minor (Table S5). Our results showed that exon 98 (i.e. exon 95 of the meta-transcript) was included significantly less in the mRNAs of postnatal muscles compared to fetal muscles (FDR(AM/ FM) = 3.574e - 19, $\Delta \Psi(AM/FM)$ = -36.74%) (Fig. 6). In contrast, exon 125 or 126 were included significantly more $(FDR(AM/FM) = 3.419e - 19, \Delta \Psi(AM/PM) = 3.418e - 19, \Delta \Psi$ FM) = 36.69%) in the mRNAs of postnatal muscles compared to fetal muscles (Fig. 6). As a consequence, the skipping of exon 97 (together with exon 98) was significantly upregulated in the postnatal muscles compared to fetal muscles $(P(AM > FM) = 1e - 04, \Delta)$ EJ(AM/FM) = 0.34%) (Figs. 5J, 4T). These findings, together with the real-time polymerase chain reaction (RT-qPCR) results, indicate a higher abundance

Fig. 3 Inclusion levels of *OBSCN* exons: The plot illustrates the average Ψ inclusion levels of the unique exons of *OBSCN* (in the 4 studied sample classes, *i.e.* postnatal muscles, postnatal hearts, fetal muscles and fetal hearts) and the exons are ordered by their start position (*i.e.* X- axis). Each dot shows the average of the Ψ values for an *OBSCN* exon within a sample class. The dots are marked by the exon numbers. For those dots that are too close together to distinguish, the ranges of the exon numbers are stated. The average Ψ measurements related to a sample class are connected via a line. As their Ψ measurements are not accurate (due to the lack of exon-skipping sequence reads), the first and last exons are shown with red triangles and horizontal grey dashed-lines. The variance of the average Ψ values (across the different sample classes) are shown (with a purple line) below, in the figure. Exon 126 (i.e. an alternative last exon) is omitted as its start coordinate is identical to that of exon 125

of the longer isoform obscurin-B in the postnatal skeletal muscles despite the higher abundance of the shorter isoform obscurin-A in the fetal skeletal muscles (Fig. 4T, Table S6).

We also studied the alternative 3' splicing related to the exons 122 and 123 (*i.e.* 119 and 119a of meta-transcript, respectively) (Table 2). The inclusion levels of exon 123 (i.e. 119a of meta-transcript) were very low and the upstream intron was rarely spliced across our studied samples, suggesting that almost all mRNAs in our samples included the alternative exon 122 (i.e. 119 of metatranscript) (Fig. S4, Additional File 1).

The affected protein domains

The exons 17 and 18 that were frequently skipped in the adult skeletal muscle samples are known to code for Ig domains (Table 2). Furthermore, the exons 48–56 that were less included in the postnatal skeletal and cardiac muscles compared to the equivalent prenatal samples,

also code for Ig domains (Table 2). As mentioned earlier, our results showed higher abundance of the longer *OBSCN* isoform (*e.g.* obscurin-B) compared to the shorter isoform (*e.g.* obscurin-A) in postnatal skeletal muscles, even though the shorter isoform was more abundant in fetal skeletal muscles. Compared to the short isoform (*i.e.* obscurin-A), the long isoform (*i.e.* obscurin-B) features an addition fibronectin type-III domain, two additional Ig sites and two serine/threonine type kinase sites. These variations in the domains can change the chemical/physical properties of a protein and ultimately affect its function.

Regulation of OBSCN exon inclusion by the splicing factors We examined the Spearman (rank) correlation of the expression of the significantly differentially expressed splicing factors (when comparing postnatal to fetal muscle samples) with the inclusion Ψ values of the *OBSCN* exons that were significantly differentially included (in

Fig. 4 Significantly differentially included *OBSCN* exons: **A-O**) Ordered by the exon number, the boxplots illustrate the distribution of the Ψ levels of the exons that were detected as significant (FDR < 0.05) in at least three of the comparisons performed in the study. The box plots extend from the 25th to the 75th percentile, and the thick horizontal line represents the median. The whiskers of the box plots show 1.5 times the interquartile range. The outliers are values higher and lower than the interquartile range. **P-R** Sashimi plots, illustrate the exon-exon junctions observed in the RNAseq data, in regions flanking exons 17, 18, 48, 98 and 126. The samples with the nearest PSI values to the median PSI of the exons are chosen for the sashimi plots. **S-T** Relative expression levels of the mRNAs that include exons 17 and 18 (S) (based on primers matching junctions Ex16-Ex17 and Ex18-Ex19), and relative expression of the long and short *OBSCN* isoforms (T) (based on analyzing exon-exon junctions specific to these isoforms) are shown with bar plots. These values were measured by real-time polymerase chain reaction (*i.e.* RT-qPCR) in the postnatal and fetal skeletal muscles. The exon-exon junction levels have been normalized to the total OBSCN mRNA levels (*i.e.* inferred by Ex67-Ex68 junction in *S* and Ex5-Ex6 junction in *T*). The sample classes include: mostly adult postnatal muscles (AM), mostly adult postnatal hearts (AH), fetal muscles (FM), and fetal hearts (FH). The significant levels in the plots are shown using asterisks: *P* < 0.05 (*), *P* < 0.01 (**) and *P* < 0.001 (***)

Fig. 5 Normalized exon-exon junction levels of non-consecutive exons. Boxplots, illustrating the distribution of the normalized canonical (**A-G**) and non-canonical (**H-M**) junction levels of non-consecutive exons. If the exon-flanking 5' or 3' splice site is included in the reference (i.e. GENCODE) the name of the corresponding exon begins with "EX"; otherwise it starts with "ex". The sample classes include: mostly adult postnatal muscles (AM), mostly adult postnatal hearts (AH), fetal muscles (FM), and fetal hearts (FH). The p-value and ΔEJ values for two sets of comparisons are listed below the box plots: postnatal muscle vs fetal muscle (AM > FM), and postnatal heart vs fetal heart (AH > FH). The Jonckheere Terpstra method was used to test the order and extract the significant results. The significant levels are shown using asterisks: P < 0.05 (*), P < 0.01 (***). The box plots extend from the 25th to the 75th percentile, and the thick horizontal line represents the median. The whiskers of the boxplots show 1.5 times the interquartile range.

postnatal muscle vs fetal muscle) across the studied skeletal muscle samples. Several significant correlations (|rho| > 0.4, P < 0.05) were detected, *e.g.* expression of *DHX15*, *THOC1*, PRPF1 with inclusion levels of exon 17 and 49 (Fig. 7A-J, Table S7-S10). However, remarkably the expression of *BUB3* was significantly correlated with the inclusion levels of most of the significantly differentially included exons (Fig. 7A-I). The BUB3 gene belongs to the budding uninhibited by benomyl (BUB) protein family and is involved in mitosis, aging, carcinogenesis,

as well as splicing [12, 13]. Our results suggest the possibility of regulation of *OBSCN* splicing by *BUB3* especially during muscle development.

Discussion

Alternative splicing plays an essential role in the regulation of gene expression during organ development in mammalians. It is known that throughout the different stages of human life, a great number of genes are differentially spliced, especially in tissues such as brain

Fig. 6 The inclusion of the alternative last exons in OBSCN mRNAs. The boxplots, illustrate the distribution of the Ψ levels of the alternative last exons. The sample classes for which the Ψ values are shown are: muscle vs heart (M), mostly adult postnatal vs fetal (A), postnatal muscle vs fetal muscle samples (AM/FM), postnatal heart vs fetal heart samples (AH/FH), postnatal muscle vs postnatal heart samples (AM/AH), and fetal muscle vs fetal heart samples (FM/FH). The significant levels are shown using asterisks: P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***). They are coloured in red if $|\Delta \psi| \ge 10$. The box plots extend from the 25th to the 75th percentile, and the thick horizontal line represents the median. The whiskers of the boxplots show 1.5 times the interquartile range. The outliers are values higher and lower than the interquartile range. Since their start coordinates are identical, the Ψ values for the exons 125 (i.e. 121a of meta-transcript, *chr1: 228378618–228378876*) are indistinguishable, therefore reported together

and heart [14]. Here we studied OBSCN, a gene associated with neuromuscular function that has 121 nonoverlapping (or 126 unique) exons and codes for some of the largest mRNAs in the human genome. OBSCN is upregulated in aged skeletal muscle myofiber fragments (e.g. MF-IIsc) and RASA4 + myocytes (Table S10) [15]. However, we studied the splicing regulation of OBSCN during human skeletal and cardiac muscle development. Given the large number of exons in the gene, we hypothesized that it undergoes extensive alternative splicing regulation during muscle and heart development. As a result, we discovered several alternative splicing events in OBSCN associated with skeletal and cardiac muscle development. These mainly included cassette exons and alternative last exon usage events that were significantly differential in the postnatal human skeletal and cardiac muscles, compared to the equivalent prenatal tissues.

The splicing event that was most frequently differential across our pre- and postnatal cardiac, and skeletal muscle samples was exon inclusion (Figs. 3 and 4). The predominance of the exon inclusion (and exon skipping) was not surprising as in previous studies this splicing event has been the most frequent out of all the significant alternative splicing events found in mammals and vertebrates [16]. Also in-line with these findings, exon skipping has been reported as the most frequently regulated event during the development of seven organs (including heart) in six mammals (including human) and a bird [14]. In mice muscles, extensive differential gene expression and alternative splicing has been discovered to occur during the first two weeks after birth, with the vast majority of these alternative splicing events (*i.e.* 77%) being exon skipping [17].

In this study, we discovered extensive exon inclusion regulation at several loci, at the 5' end, the middle and the 3' end of *OBSCN* gene that are associated with cardiac or skeletal muscle development. Exons 48–56 of *OBSCN* were significantly less included in RNAs in the postnatal muscles compared to the fetal muscles (*FDR(AM/FM)* < 0.05, $\Delta\Psi(AM/FM)$ < -10%) (Fig. 4C-M). A similar, albeit milder, effect was also seen in cardiac muscles (*FDR(AH/FH)* > 0.05, $\Delta\Psi(AH/FH)$ < 0%) (Fig. 4C-M). It is worth mentioning that from this region of *OBSCN* (*i.e.* exons 48–56), exons 48–54 have previously been reported to undergo developmentally dynamic alternative splicing, especially during human heart development [14]. A dynamic alternative splicing event is a splicing

Fig. 7 Correlation of the *OBSCN* exon inclusion levels with the expression of several splicing factors. **A** The rank correlation of the expression of the significantly differentially expressed splicing factors (comparing postnatal muscles vs fetal muscles) with the inclusion levels of the exons that were significantly differentially included (also when comparing postnatal muscles vs fetal muscles) have been shown as a matrix of circles (i.e. correlation plots). The significant (*i.e.* P < 0.05) correlations have only been shown. The size and the colour of the circles represent the correlation (*i.e. rho* value) of the corresponding splice factor (labelled on the row) with the corresponding OBSCN exon (labelled on the column). The *rho* values higher than 0.4 or lower than -0.4 have also been written. **B-J** For a highly correlated pair (*i.e.* |rho| > 0.5, P < 0.05), the two lines in the plot show the PSI values of the OBSCN exon, as well as the VST normalized expression levels of the splicing factor (scaled to 100) across the studied samples

event whose PSI changes in the studied tissue (e.g. heart) during human life is greater than 20% [14]. Another exon inclusion regulation, exhibiting strong effects in human muscle development and mild effects in human heart development, was seen in exons 17 and 18 (Fig. 4A,B). Additionally we noticed significant increase in several canonical as well as a few non-canonical exon junction levels in postnatal muscles compared to fetal muscles. To our knowledge the association of these alternative splicing events with human skeletal muscle development has not previously been reported. We also discovered several splicing factors (e.g. DHX15, THOC1, PRPF1, BUB3) whose expression levels were significantly correlated $(P < 0.05 \text{ and } |rho| \ge 0.4)$ with the inclusion levels of the significantly differentially included exons (when comparing postnatal to fetal muscles) (Fig. 7A-J). Our results suggest that the differential inclusion of the OBSCN exons during skeletal muscle development may be regulated by BUB3. In fact, Bub3 and BuGZ are two essential mitotic regulators that together interact with the splicing machinery in the interphase nucleus [13]. Silencing of either Bub3 or BuGZ has previously shown to enhance exon skipping in Human foreskin fibroblast (*i.e.* HFF) and ovarian carcinoma TOV21G cell lines [13]. Furthermore, BugZ was not differentially expressed (in postnatal skeletal muscles compared to prenatal skeletal muscles), therefore it is likely that the exon inclusion effects that we report are caused by the differential expression of Bub3 (Table S10). However, it is worth noting that due to scarcity of prior knock-down studies, especially in human muscle samples, a thorough analysis (beyond the scope of this study) is necessary before the precise role of Bub3 in RNA splicing, in muscles of human and other species can be concluded.

In addition to exon skipping, we discovered an alternative last exon usage event that is associated with skeletal muscle development. We discovered that the *OBSCN* isoform that ends with exon 98 (e.g. obscurin-A) is expressed much higher in fetal skeletal muscles, whereas the larger isoform that skip exons 97 and 98 and end with either exon 125 or exon 126 (e.g. obscurin-B) is more expressed in postnatal skeletal muscles (Fig. 4T and 6). To our knowledge the higher abundance of the longer *OBSCN* isoform in postnatal muscles compared to fetal muscles has neither been reported earlier.

Almost all the significantly differentially included exons detected in our study code for immunoglobulin domains. Similar to that in titin, obscurin feature long repeats of Ig domains (Table 2) and these tandem Ig domains are mostly coded by individual exons (Table 2) [6, 18]. Therefore, not surprisingly, the most affected (*i.e.* skipped) exons in our samples code for a complete (not partial) Ig domain (Table 2, Fig. 3). Even though the function of the repeated Ig domains in sarcomeric genes (*e.g. OBSCN* and *TTN*) has not thoroughly been studied previously, the extended tandem Ig domains are known to associate with increased elasticity in the isoforms [19]. Furthermore, this has been described as the reason that the sarcomere in skeletal muscle is more elastic comparted to the sarcomere in cardiac muscle [20].

The N-terminus of obscurin interacts with several proteins such as titin, slow myosin binding protein C, and myomesin. Furthermore, the 58th and 59th Ig domains in obscurin (coded by exons 67 and 68 of OBSCN, with ~100% of exon inclusion rate) are known to interact with the Z-band of titin, signifying the essential role of OBSCN in myofibrillogenesis [1, 21]. Further structural studies are needed to reveal the precise effects of the significantly differential exon inclusion events that we have described above. However, as the exons 48-58 are distanced from the 5' end and the titin interacting sites (i.e. exons 67 and 68), the skipping of these exons neither is expected, nor has previously been reported to directly affect the interaction of the obscurin N-terminal with other proteins or to affect the obscurin-titin interaction. The C-terminus of obscurin-A interacts with small Ankyrin 1 (sAnk1) and Ankyrin-B [22, 23]. These interactions are essential to the Ca2+homeostasis and the assembly of the dystrophin complex, respectively [21]. Furthermore, changes in calcium homeostasis and reduction of dystrophin have both been reported in aged skeletal muscles [24, 25]. However, even though it can be speculated that the downregulation of obscurin-A in adult skeletal muscles (compared to fetal skeletal muscles) that we have described above may contribute to these phenotypes, the connection of these phenotypes to obscurin splicing has not specifically been studied.

Finally, RNA splicing regulation information can assist the researchers and the clinicians to understand the clinical impacts of the exonic variants. As for instance we have recently shown how similar exon usage information for *TTN* can be used to explain the disease course in nine titinopathy patients [26]. Remarkably, the exon usage information has also been useful in ruling out titinopathy diagnosis for a prenatal case [26]. Therefore, we believe that information related to the *OBSCN* exon usage and splicing regulation during skeletal/cardiac muscle development, that we have described in detail here, is potentially useful for clinical interpretation of the exonic mutations in *OBSCN*.

Conclusion

In this study we have described several novel exon skipping events that are associated with human cardiac and skeletal muscle development. Additionally, we discovered an alternative final exon usage event associated with human skeletal muscle development. This information allows us to understand the regulation of *OBSCN* splicing during human muscle and heart development. Furthermore, the data is essential for clinical and prognostic interpretation of the *OBSCN* exonic variants and understanding the effects of these variants on the protein expression in different stages of life.

Our study is strengthened by the thoroughness of the analysis and the support for P-values (and FDRs) that describe how significantly differential the alternative splicing events are during human skeletal and cardiac muscle development. The study is however reliant on the analysis of RNAseq data from a limited selection of muscle types (e.g. tibialis anterior and vastus lateralis from the studied postnatal individuals). Therefore, it can be improved by including RNAseq data from more samples and from a more diverse types of muscle tissues in the analysis. Finally, we have developed an interactive visualization tool (using the shiny R package) that can easily be used by the clinicians to check the inclusion level of each OBSCN exon during skeletal and cardiac muscle development. The interactive R shiny application is available at http://psivis.it.helsinki.fi:3838/OBSCN_PSIVIS/.

Methods

In-house data

For prenatal analysis, a trained fetal pathologist collected fetal skeletal muscles (n=20) and fetal cardiac muscles (n=2) from 2 different fetuses, without muscle pathology, obtained from voluntary termination of pregnancy (TOP).

For postnatal analysis, we collected sample biopsies from an internal cohort of 44 individuals (Table 1). RNA was extracted with the Qiagen RNeasy Plus Universal Mini Kit (Qiagen, Hilden, Germany) according to the instructions provided by the manufacturer. Total RNA-Seq libraries were prepared using the Illumina Ribo-Zero Plus rRNA Depletion Kit (Illumina, Palo Alto, CA, USA) at the Oxford Genomics Center, Welcome Trust Institute, Oxford, United Kingdom and Novogene. Sequencing was performed using NovaSeq 6000 (Illumina), generating over 80 million 150 bp-long reads per sample.

External data

In addition to our in-house data, we studied four samples from ENCODE with accession IDs: ENCBS067RNA (fetal skeletal muscle tissue, 19 weeks female), ENCB-S068RNA (fetal skeletal muscle tissues, 22 weeks male), ENCBS055RNA (fetal heart tissue, 28 weeks female) and ENCBS056RNA (fetal heart tissue, 19 weeks female) [27, 28]. Furthermore, for a view on *OBSCN* expression across different human tissues, we obtained data from the GTEx Portal (Analysis Release V8) and dbGaP accession number phs000424.v8.p2 on 09/13/23.

RNA-Seq read alignment

The paired RNA-Seq reads were mapped to the Human Genome (GRCh38.p13) using the splice-aware alignment software STAR (V2.7.7a) [29]. The software was run in 2-pass mode and most parameters were set to their default values. For the gene annotation, Gencode.v39 was used (further details available in supplemental methods, Additional file 1).

Splicing analysis and exon inclusion level estimation

The inclusion levels (i.e. PSI or Ψ values) of all unique exons in human genome, including those of OBSCN gene, were measured using the Intron Exon Retention Estimator (IntEREst) R/Bioconductor package (V1.26.1) [30]. IntER-Est is a comprehensive RNA-Seq read summarization, differential intron retention and splicing analysis software. It supports tools that measure suitable Ψ values and run statistical differential test for splicing analysis. The inclusion Ψ values were measured for every OBSCN exon. The statistical significance of the increase or decrease of the inclusion levels of OBSCN exons was preformed genome-wide for all exons (except for the first and last exons), however later the results for the OBSCN exons were extracted [31]. The statistical test compared the variation of inclusion of each exon relative to the genome-wide variation observed for inclusion of the studied exons. The analysis was adjusted for possible biases introduced by the different sequencing batches by including this parameter as a covariate in the design model of the statistical tests (further details available in supplemental methods, Additional file 1).

In addition to exon skipping/inclusion, we ran a similar analysis for the inclusion of the alternative first and last exons, as well as the only case of alternative 3' splicing in *OBSCN* (*i.e.* affecting exons 122 and 123, or 119 and 119a from the meta transcript) (Table 2). All the first/last exons of the studied genes (including *OBSCN*) were extracted using biomaRt [32]. All *P*-values were adjusted for multiple

testing, using the Benjamini–Hochberg method [33]. An FDR<0.05 cutoff was used to extract the significant results.

Finally, differential gene expression analysis was performed using DESeq2. The analysis was adjusted for the batch effects. The rank correlation of the VST normalized expression levels of the splicing factors (whose IDs were extracted from other studies [34-36]) with the exon inclusion Ψ values was also measured using the Spearman method (further details available in supplemental methods, Additional file 1).

Real-time polymerase chain reaction (RT-qPCR) validation

RNA was extracted from two adult muscle samples and two fetal muscle samples using the Qiagen RNeasy Plus Universal Mini Kit (Qiagen, Hilden, Germany) and according to the instructions provided by the manufacturer. The cDNA synthesis was performed using SuperScript III Reverse Transcriptase (Invitrogen TM) and random primers, according to the protocol provided by the manufacturer. The UCSC In-Silico PCR tool and Primer3web v4.1.0 were used to design primers to target either exon-exon junctions or other regions near the junctions (Table S11). The RT-qPCR assays were performed using the iQ SYBR Green Supermix (BIO-RAD) and 25 nM of each specific primer. Furthermore, three technical replicates were taken into consideration. For the normalization, 18S was used as the reference gene. The final results were calculated using the $\Delta\Delta$ Ct method and the relative quantification values were plotted (Fig. 4S-T).

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13395-025-00374-6.

Additional file 1: Supplemental	methods and Figures S1-4.
---------------------------------	---------------------------

Additional file 2: Table S1. Inclusion levels of OBSCN exons.

Additional file 3: Table S2. RT-qPCR of inclusion level changes of OBSCN exons in fetal and post-natal skeletal muscle samples.

Additional file 4: Table S3. Canonical exon-exon junction level changes (for non-consecutive exons).

Additional file 5: Table S4. Non-canonical exon-exon junction level changes (for non-consecutive exons).

Additional file 6: Table S5. Alternative last exon PSI value changes.

Additional file 7: Table S6. RT-qPCR of inclusion level changes of long vs short OBSCN isoforms in fetal and post-natal skeletal muscle samples.

Additional file 8: Table S7. The studied splicing factors.

Additional file 9: Table S8. Spearman (rank) correlation of expression of splicing factors with exon inclusion levels PSI values across the skeletal muscle samples.

Additional file 10: Table S9. Spearman (rank) correlation of expression of splicing factors with exon inclusion levels PSI values across the cardiac muscle samples.

Additional file 11: Table S10. Differential expression analysis results for OBSCN and the studied Splicing Factors.

Additional file 12: Table S11. Primer information for the qPCR validation.

Acknowledgements

We would like to thank the IT Center for Science in Finland (CSC) and the IT Center of the University of Helsinki for providing us with the required computing resources throughout this project.

Authors' contributions

AO contributed to the project conceptualization, project supervision, data analysis, validation of the results, development of software, data visualization, and writing of the manuscript. PHJ contributed to the project conceptualization, validation of the results, and review/editing of the manuscript. SNG contributed to validation of the results; data curation and review/editing of the manuscript. MJ contributed to data curation and review/editing of the manuscript. EN contributed to the data analysis. DGA, FM, JCS and MASD provided fetal samples and contributed to data Curation. JS, HT and JT provided adult heart samples and contributed to data curation. PH contributed to the data curation; review/editing of the manuscript, project administration and funding acquisition. MS contributed to the project conceptualization, project administration, project supervision, funding acquisition, validation of the results; data curation and review/editing of the manuscript. BU contributed to the project administration, project supervision, funding acquisition, data curation, and review/editing of the manuscript. All authors read and approved the final manuscript.

All authors read and approved the final manuscript.

Funding

Open Access funding provided by University of Helsinki (including Helsinki University Central Hospital). We would like to acknowledge that our research was supported by Magnus Ehrnrooth foundation (AO), Samfundet Folkhälsan i Svenska Finland (MS, BU), Jane and Aatos Erkko foundation (PH), Academy of Finland (MS, BU), European Joint Program on Rare Diseases (BU, FM), Sydäntutkimussäätiö (MS), CoMPaSS-NMD (funded by the European Union under Grant Agreement n° 101080874) and Instituto de Salud Carlos III, Spain (project number AC19/00048 to FM). Open access was funded by Helsinki University Library.

Data availability

The in-house RNA-Seq data analysed during the current study are available in the Gene Ex-pression Omnibus repository under accession number GSE270408 (https://www.ncbi.nlm.nih.gov/geo/query/acCite Reference.c.cgi?acc=GSE270408). Due to GDPR the intron and exon level read count tables are publicly available, however further data are available from the corresponding author upon reasonable request. The external RNA-Seq data analysed during the current study are available in the ENCODE repository under accession numbers ENCFF001RMW, ENCFF001RMX, ENCFF001RPA, ENCFF001RPB, ENCFF001ROH, ENCFF001ROG, ENCFF001RPA, ENCFF001RPE (accessible via https://www.encodeproject.org/experiments/ENCSR 000AEZ/ and https://www.encodeproject.org/experiments/ENCSR000AFF/) [27, 28]. The analysis scripts are available in GitHub (accessible via https:// github.com/gacatag/OBSCN_SCRIPTS).

Declarations

Ethics approval and consent to participate

All the muscle-biopsy donors signed an informed consent. The study falls under the ethical HUS/16896/2022. Fetal sampling falls under the approval by Ethics Committee of Clinical Research of the Hospital Universitari Vall d'Hebrón (PR(AMI)210/2021).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹Folkhälsan Research Center, Helsinki, Finland. ²Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland. ³Department of Medical Genetics, University of Helsinki, Helsinki, Finland. ⁴Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia. ⁵Pediatric Neuromuscular Unit. Child Neurology Department. Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) ES, Barcelona, Spain. ⁶Histology Department, Vall d'Hebron University Hospital ES, Barcelona, Spain. ⁷Prenatal Diagnosis Department, Vall D'hebron University Hospital ES, Barcelona, Spain. ⁸Department of Obstetrics, Maternal Fetal Medicine Unit, Universitat Autònoma de Barcelona, Hospital Vall D'hebron, Barcelona, Spain. ⁹Helsinki University Central Hospital, Helsinki, Finland. ¹⁰Department of Pathology, Transplantation Laboratory, University of Helsinki, Helsinki, Finland. ¹¹Department of Neurology, Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.

Received: 23 July 2024 Accepted: 27 January 2025 Published: 1 March 2025

References

- Young P, Ehler E, Gautel M. Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol. 2001;154:123–36.
- Fukuzawa A, Idowu S, Gautel M. Complete human gene structure of obscurin: implications for isoform generation by differential splicing. J Muscle Res Cell Motil. 2006;26:427–34.
- Grogan A, Tsakiroglou P, Kontrogianni-Konstantopoulos A. Double the trouble: giant proteins with dual kinase activity in the heart. Biophys Rev. 2020;12:1019–29.
- Russell MW, Raeker MO, Korytkowski KA, Sonneman KJ. Identification, tissue expression and chromosomal localization of human Obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases. Gene. 2002;282:237–46.
- Borisov AB, Raeker MÖ, Russell MW. Developmental expression and differential cellular localization of obscurin and obscurin-associated kinase in cardiac muscle cells. J Cell Biochem. 2008;103:1621–35.
- 6. Benian GM, Mayans O. Titin and Obscurin: Giants Holding Hands and Discovery of a New Ig Domain Subset. J Mol Biol. 2015;427:707–14.
- 7. Arimura T, Matsumoto Y, Okazaki O, Hayashi T, Takahashi M, Inagaki N, et al. Structural analysis of obscurin gene in hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2007;362:281–7.
- Randazzo D, Pierantozzi E, Rossi D, Sorrentino V. The potential of obscurin as a therapeutic target in muscle disorders. Expert Opin Ther Targets. 2017;21:897–910.
- Rossi D, Palmio J, Evilä A, Galli L, Barone V, Caldwell TA, et al. A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. Mayans O, editor. PLOS ONE. 2017;12:e0186642.
- Cabrera-Serrano M, Caccavelli L, Savarese M, Vihola A, Jokela M, Johari M, et al. Bi-allelic loss-of-function OBSCN variants predispose individuals to severe recurrent rhabdomyolysis. Brain. 2022;145:3985–98.
- 11. Chang W, Cheng J, Allaire JJ, Sievert C, Schloerke B, Xie Y, et al. shiny: Web Application Framework for R. 2024. Available from: https://CRAN.R-proje ct.org/package=shiny
- 12. Silva PMA, Bousbaa H. BUB3, beyond the Simple Role of Partner. Pharmaceutics. 2022;14:1084.
- Wan Y, Zheng X, Chen H, Guo Y, Jiang H, He X, et al. Splicing function of mitotic regulators links R-loop–mediated DNA damage to tumor cell killing. J Cell Biol. 2015;209:235–46.
- Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H. Alternative splicing during mammalian organ development. Nat Genet. 2021;53:925–34.
- 15. Kedlian VR, Wang Y, Liu T, Chen X, Bolt L, Tudor C, et al. Human skeletal muscle aging atlas. Nat Aging. 2024;4:727–44.
- 16. Kim HK, Pham MHC, Ko KS, Rhee BD, Han J. Alternative splicing isoforms in health and disease. Pflüg Arch - Eur J Physiol. 2018;470:995–1016.
- 17. Brinegar AE, Xia Z, Loehr JA, Li W, Rodney GG, Cooper TA. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions. eLife. 2017;6:e27192.
- Kolmerer B, Olivieri N, Witt CC, Herrmann BG, Labeit S. Genomic Organization of M Line Titin and its Tissue-specific Expression in Two Distinct Isoforms. J Mol Biol. 1996;256:556–63.

- Granzier HL, Irving TC. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J. 1995;68:1027–44.
- Kenny PA, Liston EM, Higgins DG. Molecular evolution of immunoglobulin and fibronectin domains in titin and related muscle proteins. Gene. 1999;232:11–23.
- Whitley JA, Ex-Willey AM, Marzolf DR, Ackermann MA, Tongen AL, Kokhan O, et al. Obscurin is a semi-flexible molecule in solution. Protein Sci. 2019;28:717–26.
- Borzok MA, Catino DH, Nicholson JD, Kontrogianni-Konstantopoulos A, Bloch RJ. Mapping the Binding Site on Small Ankyrin 1 for Obscurin. J Biol Chem. 2007;282:32384–96.
- Randazzo D, Giacomello E, Lorenzini S, Rossi D, Pierantozzi E, Blaauw B, et al. Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity. J Cell Biol. 2013;200:523–36.
- Hughes DC, Marcotte GR, Marshall AG, West DWD, Baehr LM, Wallace MA, et al. Age-related differences in dystrophin: Impact on force transfer proteins, membrane integrity, and Neuromuscular Junction Stability. J Gerontol A Biol Sci Med Sci. 2017;72:640–8.
- Terrell K, Choi S, Choi S. Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions. Int J Mol Sci. 2023;24:17034.
- Di Feo MF, Oghabian A, Nippala E, Gautel M, Jungbluth H, Forzano F, et al. Inferring disease course from differential exon usage in the wide titinopathy spectrum. Ann Clin Transl Neurol. 2024;11:2745–55.
- 27. Gingeras T. ENCSR000AEZ. 2014. Available from: https://www.encodeproj ect.org/experiments/ENCSR000AEZ/. Cited 2024 Jul 10.
- Gingeras T. ENCSR000AFF. 2014. Available from: https://www.encodeproj ect.org/experiments/ENCSR000AFF/. Cited 2024 Jul 10.
- 29. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
- Oghabian A, Greco D, Frilander MJ. IntEREst: intron-exon retention estimator. BMC Bioinformatics. 2018;19:130.
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
- Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4:1184–91.
- Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
- Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, et al. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Rep. 2018;23:282-296.e4.
- Seal RL, Braschi B, Gray K, Jones TEM, Tweedie S, Haim-Vilmovsky L, et al. Genenamesorg: the HGNC resources in 2023. Nucleic Acids Res. 2023;51:D1003-9.
- Giulietti M, Piva F, D'Antonio M, D'Onorio De Meo P, Paoletti D, Castrignanò T, et al. SpliceAid-F: a database of human splicing factors and their RNA-binding sites. Nucleic Acids Res. 2013;41:D125–31.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.