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Abstract

Background Highly expressed in skeletal muscles, the gene Obscurin (i.e. OBSCN) has 121 non-overlapping exons
and codes for some of the largest known mRNAs in the human genome. Furthermore, it plays an essential role

in muscle development and function. Mutations in OBSCN are associated with several hypertrophic cardiomyopa-
thies and muscular disorders. OBSCN undergoes extensive and complex alternative splicing, which is the main reason
that its splicing regulation associated with skeletal and cardiac muscle development has not previously been thor-
oughly studied.

Methods We analyzed RNA-Seq data from skeletal and cardiac muscles extracted from 44 postnatal individuals

and six fetuses. We applied the intron/exon level splicing analysis software IntEREst to study the splicing of OBSCN

in the studied samples. The differential splicing analysis was adjusted for batch effects. Our comparisons revealed

the splicing variations in OBSCN between the human skeletal and cardiac muscle, as well as between post-natal mus-
cle (skeletal and cardiac) and the pre-natal equivalent muscle.

Results We detected several splicing regulations located in the 5end, 3'end, and the middle of OBSCN that are asso-
ciated with human cardiac or skeletal muscle development. Many of these alternative splicing events have not previ-
ously been reported. Our results also suggest that many of these muscle-development associated splicing events
may be regulated by BUB3.

Conclusions We conclude that the splicing of OBSCN is extensively regulated during the human skeletal/cardiac
muscle development. We developed an interactive visualization tool that can be used by clinicians and researchers
to study the inclusion of specific OBSCN exons in pre- and postnatal cardiac and skeletal muscles and access the sta-
tistics for the differential inclusion of the exons across the studied sample groups. The OBSCN exon inclusion map
related to the human cardiac and skeletal muscle development is available at http://psivis.it.helsinki.fi:3838/OBSCN_
PSIVIS/. These findings are essential for an accurate pre- and postnatal clinical interpretation of the OBSCN exonic
variants.
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Background

Discovered about two decades ago, the name of the
gene Obscurin (OBSCN) refers to the challenges that
were endured by the researchers in its initial detection
and characterization [1]. These challenges were mainly
caused by the large size and the relatively low abundance
of the transcripts in most tissues. With 121 non-overlap-
ping exons, OBSCN is indeed one of the genes that code
for the largest mRNAs in the human genome. In human,
it is expressed at highest levels in skeletal muscles, how-
ever it is also highly expressed in cardiac muscles (Fig. 1).
With the relatively high number of exons, we speculate
that OBSCN undergoes extensive alternative splicing,
especially exon skipping. These events are known to
result in different mRNAs that code for a family of pro-
teins characterized as “obscurins” [1, 2]. The two largest
OBSCN isoforms are obscurin A and obscurin B [3]. They
are both characterized by a long stretch of more than 60
immunoglobulin (i.e. Ig) repeats that are interrupted by a
calmodulin-binding IQ motif and several domains such
as fibronectin type-III, SRC homology 3, Rho guanine
nucleotide exchange factor and pleckstrin homology. The
former (i.e., obscurin A), which is also the smaller of the
two (i.e. ~720 kDa), features a non-modular C-terminal
that includes several phosphorylation sites. In contrast,
the C-terminus of obscurin B (i.e. ~870 kDa) features a
fibronectin type-III domain, two additional Ig sites and
two serine/threonine type kinase sites (for a comprehen-
sive review see Grogan A., et al.) [3]. Furthermore, other
smaller isoforms are reported to be highly abundant in
cardiac muscles. Some of these isoforms solely feature an
Ig site, a fibronectin type-III site, and one or two kinase
domains [3-5].
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Obscurin is associated with neuromuscular functions
such as myofibrillogenesis, hypertrophic response and
cytoskeletal arrangements [3]. Furthermore, obscurin
interacts with the giant sarcomere protein titin [6]. In
fact, obscurin/titin disrupting mutations are suggested
to be the cause of several hypertrophic cardiomyopathies
and muscular disorders [7-9]. Despite the important
role of OBSCN in the skeletal muscle development and
functioning, to our knowledge, the splicing regulation of
OBSCN has not yet been studied in detail. In this study,
we analyzed 75 pre- and post-natal skeletal muscle and
heart (i.e. 45 postnatal muscles, 7 postnatal hearts, 20
fetal muscles and 3 fetal hearts) RNAseq data. The fetal
samples have been denoted with “F’, and the muscle and
heart samples are referred to as “M” and “H” respectively.
However, to prevent confusion with “prenatal” we have
labelled the postnatal samples with “A” as most of these
samples are from adults. In particular, we studied the
well-known isoforms of OBSCN to quantify and compare
the inclusion levels of the OBSCN exons across the stud-
ied samples. This allowed us to characterize the splic-
ing regulation of OBSCN in cardiac and skeletal muscle
development by comparing pre- and post-natal samples.
As the role of obscurin in muscle diseases is an emerging
topic of study [8, 10], a detailed map of the splicing and
the expression of various isoforms of this gene is of great
importance for the correct interpretation of the effects of
novel variants.

Results

The prenatal analysis consisted of analyzing inhouse
RNA-Seq data from fetal skeletal muscles (n=20) and
fetal cardiac muscles (#=2) from 2 different fetuses

Bulk tissue gene expression for OBSCN (ENSG00000154358.20)
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Fig. 1 Expression of OBSCN in various tissues. Log,, scaled expression of OBSCN across different tissues available in GTEX Analysis Release V8. The
curves show the density of the expression values. The horizontal line within the black box shows the median. The black box plots extend vertically
from the 25th to the 75th percentile. The outliers are expression levels higher or lower than 1.5 time the interquartile range. GTEx Portal (Analysis
Release V8) on 09/13/23
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(Table 1). Additionally, it included analyzing publicly
available skeletal muscle data from a 19 weeks female,
skeletal muscle data from a 22 weeks male, cardiac
muscle data from a 28 weeks female and cardiac mus-
cle data from a 19 weeks female (for more information
see ‘Methods’). For postnatal analysis, RNA-Seq data
from an internal cohort of 44 individuals were analyzed
(Table 1). We studied six OBSCN isoforms, four of which
were curated mRNAs and featured NM REFSEQ IDs, i.e.
ENST00000284548 (NM_052843), ENST00000422127
(NM_001098623), ENST00000570156 (NM_001271223)
and ENST00000680850 (NM_001386125). Addition-
ally, we analyzed isoforms ENST00000660857 and
ENSTO00000493977 since they collectively featured
four additional unique exons. Overall, we extracted
126 unique or 121 non-overlapping exons from these
isoforms, out of which three exons were annotated as
alternative first and four exons as alternative last. Addi-
tionally, the introns upstream of two exons were anno-
tated with alternative 3’ splicing (Table 2).

Exon inclusion/skipping

We measured ¥ inclusion levels of the 126 OBSCN
exons for the 45 postnatal skeletal muscle, seven post-
natal heart, 20 fetal skeletal muscle and three fetal heart
samples. Heatmap (coupled with hierarchical cluster-
ing using the “Euclidean” distance) and PCA analysis of
OBSCN exon inclusion PSI values showed that the sam-
ples did not group based on the sex and clinical diagno-
sis of the studied individuals (Fig. S1A,B, Additional File
1). However, overall, a clear distinction of pre- and post-
natal skeletal muscles with a less distinction of pre- and

Table 1 Internal cohort of individuals whose biopsies were
collected for RNA-seq

Sex No. sam-
ples
M 21
F 12
NA 13
Age at biopsy (years)
0-4
5-20
21-60 25
>60 5
NA 5
Clinical conditions
Unsolved myopathy 24
Myopathy with a genetic diagnosis 13
Amputees for myopathy-unrelated reasons 4
Hyperckemia without myopathology 5
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postnatal cardiac muscles was observed (Fig. 2B, and
Fig. S2, Additional File 1). We compared the samples in
six different ways: the muscle samples to heart samples
(i.e. denoted with M), postnatal (i.e. mostly from adult
individual) samples to fetal samples (i.e. A), postnatal
muscle samples to fetal muscle samples (i.e. AM/FM),
postnatal heart samples to fetal heart samples (i.e. AH/
FH), postnatal muscle samples to postnatal heart samples
(i.e. AM/AH), and fetal samples to fetal heart samples
(i.e. FM/FH) (Fig. 2A). We plotted the average W levels to
detect loci within OBSCN where differential splicing was
detected when fetal samples were compared to postnatal
samples or heart samples were compared to skeletal mus-
cles (Fig. 3). Furthermore, we visualized the distribution
of the inclusion levels of the OBSCN exons in the stud-
ied samples (using box plots), for those exons whose at
least two out of the six comparisons (Fig. 2A) produced
significant results (FDR <0.05) with Ay > 10 (%)(Fig. 4).
It is worth noting that for three of the studied exons (i.e.
exons 48, 53 and 56) significant results were achieved in
all comparisons except when postnatal hearts were com-
pared to fetal hearts (Fig. 4, Table S1, and Fig. S3, Addi-
tional File 1).

Extensive exon inclusion regulation was detected
at several loci at the 5’ end (exons 17 and 18), the mid-
dle (exons 48-57) and the 3’ end of the gene (exons 97
ad 107) that were associated with skeletal muscle devel-
opment (Figs. 3, 4). The inclusion (or usage) of exon 17
(FDR(AM/EM)=0.00104, AV(AM/FM)=-19.2) and exon
18 (FDR(AM/FM)=0.00236, AW(AM/FM)=-18.2) were
noticeably lower in postnatal muscles compared to fetal
muscles (Fig. 4A-B, 4S and Table S2). Interestingly, how-
ever, a similar effect was not seen in the postnatal heart
compared to the fetal heart tissues (FDR(AH/FH)>0.9,
-5% < AV(AH/FH) <0%). This leads us to believe that
the inclusion of these exons is regulated specifically
during skeletal muscle development (and not during
heart development). As a result of this exon inclusion
decrease, upregulation of the canonical exon junctions
chr1:228243458-228246528 (connecting exons 15 and
18) and chrl:228244571-228256651 (connecting exons
16 and 20) were observed in postnatal muscles compared
to fetal muscles (P(AM>FM)=1e—-04, 0.0243% < AWV
EJ(AM/FM)<0.0485%) (Fig. 5 A-B, Table S3).

Located in the central region of the OBSCN gene, exons
48-56 were included significantly less in postnatal mus-
cles than in fetal muscles (FDR(AM/FM)<0.05, AYy(AM/
FM)<-10%) (Fig. 4). Although the inclusion levels of
these exons were mostly lower in postnatal heart samples
than in fetal heart samples (except for exon 52), the effects
were milder and the false discovery rates were not sig-
nificant (FDR(AH/FH)>0.1, Ay, (AH/EH) <-10%) (Fig. 4,
Table S1). We believe that the reason for observing a milder
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Fig. 2 Sample comparisons in our study. A The RNA-Seq data in our study were analyzed for splicing by comparing the muscle samples to heart
samples (denoted with M), mostly adult postnatal samples to fetal samples (denoted with A), mostly adult postnatal muscle samples to fetal
muscle samples (denoted also with AM/FM), mostly adult postnatal heart samples to fetal heart samples (AH/FH), mostly adult postnatal muscle
samples to mostly adult postnatal heart samples (AM/AH), and fetal samples to fetal heart samples (FM/FH). B Scatterplot shows the separation
of the studied samples based on OBSCN exon inclusion PSI values, by illustrating PC1 vs PC2 (achieved from PCA analysis). The sample types have

been labelled with different shapes and colours

effect in heart is the small size of the fetal heart samples,
as the P-value for some of these effects are less than 0.05
even though their FDR values are not (Fig. 4 K-M). Further-
more, the inclusion levels for most of these exons (i.e. exons
48, 49, 5256, as well as exons 57 and 58) were significantly
higher in human muscle samples compared to human heart
samples (FDR(M) < 0.05, AW(M)>30%), suggesting that the
detection of exon inclusion variations in the cardiac mus-
cles are technically more challenging and require more
sequence reads and biological replicates (Fig. 4). Concur-
rent to these findings, we also noticed significant increase of
several canonical as well as a few noncanonical exon junc-
tions in postnatal muscle samples compared to fetal muscle
samples (Fig. 5). The upregulated canonical exon junctions
were chrl:228288888 — 228292523 (connecting exons 47
and 49), chrl:228288888 — 228293353 (connecting exons
47 and 50), and chrl:228292161 — 228294152 (connecting
exons 48 and 51) (Table S3). The upregulated non-canonical
exon junctions were chr1:228293518 — 228294318 (overlap-
ping exons 50 and 51), chr1:228295020 - 228300123 (over-
lapping exons 52 and 55), and chr1:228300020 — 228303814
(overlapping exon 56) (Table S4).

We developed an interactive visualization tool for the
exon inclusion W values using the R Shiny package [11]
which is available at http://psivis.it.helsinki.fi:3838/

OBSCN_PSIVIS/. The software allows the users to zoom
into more precise regions within the OBSCN gene to
view the distribution of the inclusion levels (i.e. ¥) of the
exons of interest and the measured statistics.

Alternative first/last exons and alternative 3'splicing

We measured W values of the four alternative final
exons (Table 2) and two alternative first exons. It is
worth noting that the results for exons 126 and 125 (i.e.
alternative last exons) were reported together as their
differences are minor (Table S5). Our results showed
that exon 98 (i.e. exon 95 of the meta-transcript) was
included significantly less in the mRNAs of postna-
tal muscles compared to fetal muscles (FDR(AM/
FM)=3.574e— 19, AV(AM/FM)= —36.74%) (Fig. 6).
In contrast, exon 125 or 126 were included signifi-
cantly more (FDR(AM/FM)=3.419¢-19, AWV(AM/
FM)=36.69%) in the mRNAs of postnatal muscles
compared to fetal muscles (Fig. 6). As a consequence,
the skipping of exon 97 (together with exon 98) was
significantly upregulated in the postnatal muscles
compared to fetal muscles (P(AM>FM)=1e-04, A
EJ(AM/FM)=0.34%) (Figs. 5], 4T). These findings,
together with the real-time polymerase chain reac-
tion (RT-qPCR) results, indicate a higher abundance
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Fig. 3 Inclusion levels of OBSCN exons: The plot illustrates the average W inclusion levels of the unique exons of OBSCN (in the 4 studied sample
classes, i.e. postnatal muscles, postnatal hearts, fetal muscles and fetal hearts) and the exons are ordered by their start position (i.e. X- axis). Each dot
shows the average of the W values for an OBSCN exon within a sample class. The dots are marked by the exon numbers. For those dots that are too
close together to distinguish, the ranges of the exon numbers are stated. The average W measurements related to a sample class are connected

via a line. As their W measurements are not accurate (due to the lack of exon-skipping sequence reads), the first and last exons are shown with red
triangles and horizontal grey dashed-lines. The variance of the average W values (across the different sample classes) are shown (with a purple line)
below, in the figure. Exon 126 (i.e. an alternative last exon) is omitted as its start coordinate is identical to that of exon 125

of the longer isoform obscurin-B in the postnatal
skeletal muscles despite the higher abundance of the
shorter isoform obscurin-A in the fetal skeletal muscles
(Fig. 4T, Table S6).

We also studied the alternative 3" splicing related to
the exons 122 and 123 (i.e. 119 and 119a of meta-tran-
script, respectively) (Table 2). The inclusion levels of exon
123 (i.e. 119a of meta-transcript) were very low and the
upstream intron was rarely spliced across our studied
samples, suggesting that almost all mRNAs in our sam-
ples included the alternative exon 122 (i.e. 119 of meta-
transcript) (Fig. S4, Additional File 1).

The affected protein domains

The exons 17 and 18 that were frequently skipped in the
adult skeletal muscle samples are known to code for Ig
domains (Table 2). Furthermore, the exons 48—56 that
were less included in the postnatal skeletal and cardiac
muscles compared to the equivalent prenatal samples,

also code for Ig domains (Table 2). As mentioned ear-
lier, our results showed higher abundance of the longer
OBSCN isoform (e.g. obscurin-B) compared to the
shorter isoform (e.g. obscurin-A) in postnatal skeletal
muscles, even though the shorter isoform was more
abundant in fetal skeletal muscles. Compared to the short
isoform (i.e. obscurin-A), the long isoform (i.e. obscurin-
B) features an addition fibronectin type-III domain, two
additional Ig sites and two serine/threonine type kinase
sites. These variations in the domains can change the
chemical/physical properties of a protein and ultimately
affect its function.

Regulation of OBSCN exon inclusion by the splicing factors
We examined the Spearman (rank) correlation of the
expression of the significantly differentially expressed
splicing factors (when comparing postnatal to fetal mus-
cle samples) with the inclusion ¥ values of the OBSCN
exons that were significantly differentially included (in
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Fig. 5 Normalized exon-exon junction levels of non-consecutive exons. Boxplots, illustrating the distribution of the normalized canonical (A-G)
and non-canonical (H-M) junction levels of non-consecutive exons. If the exon-flanking 5’ or 3'splice site is included in the reference (i.e. GENCODE)
the name of the corresponding exon begins with “EX"; otherwise it starts with “ex”. The sample classes include: mostly adult postnatal muscles

(AM), mostly adult postnatal hearts (AH), fetal muscles (FM), and fetal hearts (FH). The p-value and AEJ values for two sets of comparisons are listed
below the box plots: postnatal muscle vs fetal muscle (AM >FM), and postnatal heart vs fetal heart (AH> FH). The Jonckheere Terpstra method

was used to test the order and extract the significant results. The significant levels are shown using asterisks: P<0.05 (*), P<0.01 (**) and P<0.001
(***). The box plots extend from the 25th to the 75th percentile, and the thick horizontal line represents the median. The whiskers of the boxplots
show 1.5 times the interquartile range. The outliers are values higher and lower than the interquartile range

postnatal muscle vs fetal muscle) across the studied
skeletal muscle samples. Several significant correlations
(|rho|>0.4, P<0.05) were detected, e.g. expression of
DHX15, THOCI, PRPF1 with inclusion levels of exon 17
and 49 (Fig. 7A-], Table S7-S10). However, remarkably
the expression of BUUB3 was significantly correlated with
the inclusion levels of most of the significantly differen-
tially included exons (Fig. 7A-I). The BUB3 gene belongs
to the budding uninhibited by benomyl (BUB) protein
family and is involved in mitosis, aging, carcinogenesis,

as well as splicing [12, 13]. Our results suggest the pos-
sibility of regulation of OBSCN splicing by BUB3 espe-
cially during muscle development.

Discussion

Alternative splicing plays an essential role in the regu-
lation of gene expression during organ development in
mammalians. It is known that throughout the different
stages of human life, a great number of genes are dif-
ferentially spliced, especially in tissues such as brain
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and heart [14]. Here we studied OBSCN, a gene asso-
ciated with neuromuscular function that has 121 non-
overlapping (or 126 unique) exons and codes for some
of the largest mRNAs in the human genome. OBSCN is
upregulated in aged skeletal muscle myofiber fragments
(e.g. MF-IIsc) and RASA4+ myocytes (Table S10) [15].
However, we studied the splicing regulation of OBSCN
during human skeletal and cardiac muscle develop-
ment. Given the large number of exons in the gene, we
hypothesized that it undergoes extensive alternative
splicing regulation during muscle and heart develop-
ment. As a result, we discovered several alternative
splicing events in OBSCN associated with skeletal and
cardiac muscle development. These mainly included
cassette exons and alternative last exon usage events
that were significantly differential in the postnatal
human skeletal and cardiac muscles, compared to the
equivalent prenatal tissues.

The splicing event that was most frequently differen-
tial across our pre- and postnatal cardiac, and skeletal
muscle samples was exon inclusion (Figs. 3 and 4). The
predominance of the exon inclusion (and exon skip-
ping) was not surprising as in previous studies this
splicing event has been the most frequent out of all the

significant alternative splicing events found in mammals
and vertebrates [16]. Also in-line with these findings,
exon skipping has been reported as the most frequently
regulated event during the development of seven organs
(including heart) in six mammals (including human) and
a bird [14]. In mice muscles, extensive differential gene
expression and alternative splicing has been discovered
to occur during the first two weeks after birth, with the
vast majority of these alternative splicing events (i.e. 77%)
being exon skipping [17].

In this study, we discovered extensive exon inclusion
regulation at several loci, at the 5" end, the middle and the
3" end of OBSCN gene that are associated with cardiac
or skeletal muscle development. Exons 48—56 of OBSCN
were significantly less included in RNAs in the postna-
tal muscles compared to the fetal muscles (FDR(AM/
FM)<0.05, AW(AM/FM)<-10%) (Fig. 4C-M). A simi-
lar, albeit milder, effect was also seen in cardiac muscles
(FDR(AH/FH)>0.05, AW(AH/FH)<0%) (Fig. 4C-M).
It is worth mentioning that from this region of OBSCN
(i.e. exons 48-56), exons 48-54 have previously been
reported to undergo developmentally dynamic alterna-
tive splicing, especially during human heart development
[14]. A dynamic alternative splicing event is a splicing
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Fig. 7 Correlation of the OBSCN exon inclusion levels with the expression of several splicing factors. A The rank correlation of the expression

of the significantly differentially expressed splicing factors (comparing p

ostnatal muscles vs fetal muscles) with the inclusion levels of the exons

that were significantly differentially included (also when comparing postnatal muscles vs fetal muscles) have been shown as a matrix of circles (i.e.

correlation plots). The significant (i.e. P<0.05) correlations have only bee

n shown. The size and the colour of the circles represent the correlation (i.e.

rho value) of the corresponding splice factor (labelled on the row) with the corresponding OBSCN exon (labelled on the column). The rho values
higher than 0.4 or lower than -0.4 have also been written. B-J For a highly correlated pair (i.e. |rho|> 0.5, P<0.05), the two lines in the plot show

the PSI values of the OBSCN exon, as well as the VST normalized express

event whose PSI changes in the studied tissue (e.g. heart)
during human life is greater than 20% [14]. Another exon
inclusion regulation, exhibiting strong effects in human
muscle development and mild effects in human heart
development, was seen in exons 17 and 18 (Fig. 4A,B).
Additionally we noticed significant increase in several
canonical as well as a few non-canonical exon junction
levels in postnatal muscles compared to fetal muscles. To
our knowledge the association of these alternative splic-
ing events with human skeletal muscle development has
not previously been reported. We also discovered sev-
eral splicing factors (e.g. DHX15, THOCI, PRPF1, BUB3)
whose expression levels were significantly correlated
(P<0.05 and |rho|> 0.4) with the inclusion levels of the
significantly differentially included exons (when compar-
ing postnatal to fetal muscles) (Fig. 7A-J). Our results
suggest that the differential inclusion of the OBSCN
exons during skeletal muscle development may be regu-
lated by BUB3. In fact, Bub3 and BuGZ are two essential

ion levels of the splicing factor (scaled to 100) across the studied samples

mitotic regulators that together interact with the splic-
ing machinery in the interphase nucleus [13]. Silencing
of either Bub3 or BuGZ has previously shown to enhance
exon skipping in Human foreskin fibroblast (i.e. HFF)
and ovarian carcinoma TOV21G cell lines [13]. Further-
more, BugZ was not differentially expressed (in postnatal
skeletal muscles compared to prenatal skeletal muscles),
therefore it is likely that the exon inclusion effects that we
report are caused by the differential expression of Bub3
(Table S10). However, it is worth noting that due to scar-
city of prior knock-down studies, especially in human
muscle samples, a thorough analysis (beyond the scope of
this study) is necessary before the precise role of Bub3 in
RNA splicing, in muscles of human and other species can
be concluded.

In addition to exon skipping, we discovered an alterna-
tive last exon usage event that is associated with skeletal
muscle development. We discovered that the OBSCN
isoform that ends with exon 98 (e.g. obscurin-A) is
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expressed much higher in fetal skeletal muscles, whereas
the larger isoform that skip exons 97 and 98 and end
with either exon 125 or exon 126 (e.g. obscurin-B) is
more expressed in postnatal skeletal muscles (Fig. 4T
and 6). To our knowledge the higher abundance of the
longer OBSCN isoform in postnatal muscles compared
to fetal muscles has neither been reported earlier.

Almost all the significantly differentially included
exons detected in our study code for immunoglobulin
domains. Similar to that in titin, obscurin feature long
repeats of Ig domains (Table 2) and these tandem Ig
domains are mostly coded by individual exons (Table 2)
[6, 18]. Therefore, not surprisingly, the most affected
(i.e. skipped) exons in our samples code for a complete
(not partial) Ig domain (Table 2, Fig. 3). Even though the
function of the repeated Ig domains in sarcomeric genes
(e.g. OBSCN and TTN) has not thoroughly been studied
previously, the extended tandem Ig domains are known
to associate with increased elasticity in the isoforms
[19]. Furthermore, this has been described as the rea-
son that the sarcomere in skeletal muscle is more elastic
comparted to the sarcomere in cardiac muscle [20].

The N-terminus of obscurin interacts with several pro-
teins such as titin, slow myosin binding protein C, and
myomesin. Furthermore, the 58th and 59th Ig domains
in obscurin (coded by exons 67 and 68 of OBSCN,
with ~100% of exon inclusion rate) are known to interact
with the Z-band of titin, signifying the essential role of
OBSCN in myofibrillogenesis [1, 21]. Further structural
studies are needed to reveal the precise effects of the sig-
nificantly differential exon inclusion events that we have
described above. However, as the exons 48-58 are dis-
tanced from the 5" end and the titin interacting sites (i.e.
exons 67 and 68), the skipping of these exons neither is
expected, nor has previously been reported to directly
affect the interaction of the obscurin N-terminal with
other proteins or to affect the obscurin-titin interac-
tion. The C-terminus of obscurin-A interacts with small
Ankyrin 1 (sAnk1l) and Ankyrin-B [22, 23]. These inter-
actions are essential to the Ca2+homeostasis and the
assembly of the dystrophin complex, respectively [21].
Furthermore, changes in calcium homeostasis and reduc-
tion of dystrophin have both been reported in aged skel-
etal muscles [24, 25]. However, even though it can be
speculated that the downregulation of obscurin-A in adult
skeletal muscles (compared to fetal skeletal muscles) that
we have described above may contribute to these pheno-
types, the connection of these phenotypes to obscurin
splicing has not specifically been studied.

Finally, RNA splicing regulation information can assist
the researchers and the clinicians to understand the clini-
cal impacts of the exonic variants. As for instance we have
recently shown how similar exon usage information for
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TTN can be used to explain the disease course in nine tit-
inopathy patients [26]. Remarkably, the exon usage informa-
tion has also been useful in ruling out titinopathy diagnosis
for a prenatal case [26]. Therefore, we believe that informa-
tion related to the OBSCN exon usage and splicing regula-
tion during skeletal/cardiac muscle development, that we
have described in detail here, is potentially useful for clinical
interpretation of the exonic mutations in OBSCN.

Conclusion

In this study we have described several novel exon skip-
ping events that are associated with human cardiac and
skeletal muscle development. Additionally, we discov-
ered an alternative final exon usage event associated
with human skeletal muscle development. This informa-
tion allows us to understand the regulation of OBSCN
splicing during human muscle and heart development.
Furthermore, the data is essential for clinical and prog-
nostic interpretation of the OBSCN exonic variants and
understanding the effects of these variants on the pro-
tein expression in different stages of life.

Our study is strengthened by the thoroughness of the
analysis and the support for P-values (and FDRs) that
describe how significantly differential the alternative
splicing events are during human skeletal and cardiac
muscle development. The study is however reliant on the
analysis of RNAseq data from a limited selection of mus-
cle types (e.g. tibialis anterior and vastus lateralis from
the studied postnatal individuals). Therefore, it can be
improved by including RNAseq data from more samples
and from a more diverse types of muscle tissues in the
analysis. Finally, we have developed an interactive visual-
ization tool (using the shiny R package) that can easily be
used by the clinicians to check the inclusion level of each
OBSCN exon during skeletal and cardiac muscle devel-
opment. The interactive R shiny application is available
at http://psivis.it.helsinki.fi:3838/ OBSCN_PSIVIS/.

Methods
In-house data
For prenatal analysis, a trained fetal pathologist collected
fetal skeletal muscles (7=20) and fetal cardiac muscles
(n=2) from 2 different fetuses, without muscle pathology,
obtained from voluntary termination of pregnancy (TOP).
For postnatal analysis, we collected sample biopsies from
an internal cohort of 44 individuals (Table 1). RNA was
extracted with the Qiagen RNeasy Plus Universal Mini Kit
(Qiagen, Hilden, Germany) according to the instructions
provided by the manufacturer. Total RNA-Seq libraries were
prepared using the Illumina Ribo-Zero Plus rRNA Depletion
Kit (Ilumina, Palo Alto, CA, USA) at the Oxford Genomics
Center, Welcome Trust Institute, Oxford, United Kingdom
and Novogene. Sequencing was performed using NovaSeq
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6000 (Ilumina), generating over 80 million 150 bp-long
reads per sample.

External data

In addition to our in-house data, we studied four sam-
ples from ENCODE with accession IDs: ENCBS067RNA
(fetal skeletal muscle tissue, 19 weeks female), ENCB-
S068RNA (fetal skeletal muscle tissues, 22 weeks male),
ENCBSO055RNA (fetal heart tissue, 28 weeks female) and
ENCBSO056RNA (fetal heart tissue, 19 weeks female) [27,
28]. Furthermore, for a view on OBSCN expression across
different human tissues, we obtained data from the GTEx
Portal (Analysis Release V8) and dbGaP accession num-
ber phs000424.v8.p2 on 09/13/23.

RNA-Seq read alignment

The paired RNA-Seq reads were mapped to the Human
Genome (GRCh38.p13) using the splice-aware align-
ment software STAR (V2.7.7a) [29]. The software was run
in 2-pass mode and most parameters were set to their
default values. For the gene annotation, Gencode.v39 was
used (further details available in supplemental methods,
Additional file 1).

Splicing analysis and exon inclusion level estimation

The inclusion levels (i.e. PSI or ¥ values) of all unique
exons in human genome, including those of OBSCN gene,
were measured using the Intron Exon Retention Estimator
(IntEREst) R/Bioconductor package (V1.26.1) [30]. IntER-
Est is a comprehensive RNA-Seq read summarization, dif-
ferential intron retention and splicing analysis software. It
supports tools that measure suitable ¥ values and run sta-
tistical differential test for splicing analysis. The inclusion ¥
values were measured for every OBSCN exon. The statisti-
cal significance of the increase or decrease of the inclusion
levels of OBSCN exons was preformed genome-wide for
all exons (except for the first and last exons), however later
the results for the OBSCN exons were extracted [31]. The
statistical test compared the variation of inclusion of each
exon relative to the genome-wide variation observed for
inclusion of the studied exons. The analysis was adjusted
for possible biases introduced by the different sequencing
batches by including this parameter as a covariate in the
design model of the statistical tests (further details available
in supplemental methods, Additional file 1).

In addition to exon skipping/inclusion, we ran a similar
analysis for the inclusion of the alternative first and last
exons, as well as the only case of alternative 3’ splicing in
OBSCN (i.e. affecting exons 122 and 123, or 119 and 119a
from the meta transcript) (Table 2). All the first/last exons
of the studied genes (including OBSCN) were extracted
using biomaRt [32]. All P-values were adjusted for multiple
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testing, using the Benjamini—Hochberg method [33]. An
FDR <0.05 cutoff was used to extract the significant results.

Finally, differential gene expression analysis was per-
formed using DESeq2. The analysis was adjusted for the
batch effects. The rank correlation of the VST normal-
ized expression levels of the splicing factors (whose IDs
were extracted from other studies [34-36]) with the
exon inclusion ¥ values was also measured using the
Spearman method (further details available in supple-
mental methods, Additional file 1).

Real-time polymerase chain reaction (RT-qPCR) validation
RNA was extracted from two adult muscle samples and two
fetal muscle samples using the Qiagen RNeasy Plus Univer-
sal Mini Kit (Qiagen, Hilden, Germany) and according to the
instructions provided by the manufacturer. The cDNA syn-
thesis was performed using SuperScript III Reverse Tran-
scriptase (Invitrogen TM) and random primers, according
to the protocol provided by the manufacturer. The UCSC
In-Silico PCR tool and Primer3web v4.1.0 were used to
design primers to target either exon-exon junctions or other
regions near the junctions (Table S11). The RT-qPCR assays
were performed using the iQ SYBR Green Supermix (BIO-
RAD) and 25 nM of each specific primer. Furthermore,
three technical replicates were taken into consideration. For
the normalization, 18S was used as the reference gene. The
final results were calculated using the AACt method and the
relative quantification values were plotted (Fig. 4S-T).
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