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Abstract 

Background The dystrophin‑glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell mem‑
brane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes 
the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane 
protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) 
restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion 
complexes at the cell membrane, protecting the muscle from contraction‑induced injury. In this study, we utilized 
transcriptomic and ECM protein‑optimized proteomics data sets from wild‑type, mdx, and mdx transgenic (mdxTG) 
skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression.

Methods The tibialis anterior and quadriceps muscles were isolated from wild‑type, mdx, and mdxTG mice and 
subjected to bulk RNA‑Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data 
sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to 
identify candidate networks, signaling pathways, and upstream regulators.

Results Through our multi‑omics approach, we identified 3 classes of differentially expressed genes and proteins 
in mdxTG muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), 
(2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different 
from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most 
notably cytoskeleton and ECM organization pathways. ECM‑optimized proteomics revealed an increased abundance 
of collagens II, V, and XI, along with β‑spectrin in mdxTG samples. Using ingenuity pathway analysis, we identified 
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upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mecha‑
nism of SSPN rescue through a rewiring of cell‑ECM bidirectional communication. We found that SSPN overexpres‑
sion results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and 
mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt.

Conclusions Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mecha‑
notransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.

Keywords Duchenne muscular dystrophy, Dystrophin, Dystroglycan, Extracellular matrix, Sarcospan

Background
Duchenne muscular dystrophy (DMD) is a progres-
sive muscle wasting disorder caused by mutations in 
the DMD gene encoding the protein dystrophin [1]. 
While dystrophin is expressed in multiple tissues, loss 
of dystrophin in the context of DMD is particularly 
detrimental to skeletal and cardiac muscle function 
[2]. Dystrophin is a component of the dystrophin-gly-
coprotein complex (DGC) that stabilizes the muscle 
fiber sarcolemma and mediates the linkage between 
the extracellular matrix (ECM) and the intracellular 
actin cytoskeleton [3–6]. Loss of dystrophin in DMD 
results in the absence of the DGC, destabilizing the sar-
colemma and rendering it susceptible to contraction-
induced damage [7]. Over time, chronic injury caused 
by asynchronous cycles of myofiber degeneration and 
regeneration results in failed muscle regeneration, 
inflammation, and replacement of functional muscle 
fibers with fibrosis [8]. Patients with DMD present with 
high plasma levels of muscle creatine kinase at birth, 
muscle fibrosis and hypertrophy, weakness of the proxi-
mal muscles, loss of ambulation, and pulmonary and 
cardiac dysfunction leading to premature death in the 
2nd to 3rd decade of life [9–11]. While there are some 
FDA-approved treatment options for DMD, including 
corticosteroids and exon-skipping drugs that slow pro-
gression of the disease, there is still no cure.

The dystrophin-deficient mdx mouse is the most 
widely used mouse model for DMD as it exhibits much of 
the pathology observed in patient skeletal muscle, albeit 
much milder, including elevated creatine kinase levels, 
increased levels of degeneration and regeneration, fibro-
sis, and reduced grip strength and whole-body tension 
[12, 13]. While many therapeutic genes that improve sar-
colemma instability, decrease fibrosis, and increase force 
in mdx muscle have been identified [14–21], there are 
gaps in understanding whether their protective mecha-
nisms affect overlapping molecular processes and signal-
ing pathways. Furthermore, there is emerging evidence 
of an expanded network of DGC-interacting proteins, 
suggesting that it functions as a central unit to integrate 
cellular signaling, lateral force transmission, ion channel 
function, and cytoskeletal organization [22, 23].

Sarcospan (SSPN), a core component of the DGC 
[24–26], prevents muscle degeneration and histopathol-
ogy in mdx mice in a mechanism that is dependent on 
increased abundance of utrophin and integrin α7β1 at 
the sarcolemma [27–32]. Together with the sarcoglycans 
(SG), SSPN forms a tight subcomplex [26] that anchors 
α-dystroglycan, a receptor for many ECM proteins [33], 
to the cell membrane to stabilize the cytoskeleton-
matrix linkage [34]. SSPN increases SG protein levels 
and restores integrity of the SG-SSPN subcomplex at the 
sarcolemma in mdx skeletal and cardiac muscles [27–31, 
35]. SSPN overexpression in mdx mice also increased 
abundance of dystroglycan, enhanced matriglycan glyco-
sylation of α-dystroglycan, and improved laminin binding 
[27, 30, 35, 36]. Using genetic approaches, we previously 
demonstrated that SSPN function is dependent on matri-
glycan modification of α-dystroglycan, which directly 
interacts with laminin [35]. Restoration of cell-matrix 
interactions by SSPN improved postexercise activity, pro-
tected against eccentric contraction-induced force loss, 
and prevented declines in pulmonary and cardiac func-
tions [29–31].

In the current study, we interrogated the effects of 
SSPN overexpression on the mdx transcriptome and 
proteome using transgenic mouse models (Supplemen-
tal Table  1). Our findings build on many prior stud-
ies including microarray data sets (Omnibus GSE465, 
GSE1004, and GSE1007) [37] and proteomic analysis 
[37–44] of mdx muscle and DMD patient muscle biop-
sies, which revealed signaling pathways that contribute 
to the dystrophic pathology including anaerobic metab-
olism, cytoskeleton remodeling, calcium handling, adi-
pogenesis, fibrosis, and endoplasmic reticulum stress. 
Given that there are many emerging approaches to treat-
ing DMD (dystrophin dependent as well as dystrophin 
independent), determining the effects of such treatments 
on cellular and molecular processes is important for 
therapeutic design. Such studies also have the potential 
to reveal overlapping pathways that are critical for pre-
vention of muscle degeneration as well as pathways that 
are unaltered by a particular therapy (thereby inform-
ing molecular processes that are not major contribu-
tors to pathology). For instance, therapeutic restoration 
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of dystrophin expression in mdx muscle by antisense 
oligonucleotide exon skipping normalizes protein and 
mRNA expression toward wild-type levels, but does not 
affect the expression of microRNAs [37]. In our study, 
we found that SSPN overexpression in mdx muscle does 
not restore all transcripts and proteins to wild-type levels 
but ameliorates muscle pathology through compensatory 
changes in ECM and cytoskeletal composition, includ-
ing key signaling molecules associated with regulation of 
cytoskeleton organization and mechanotransduction.

Methods
Mouse models
Wild-type (C57BL/6J) and mdx mice were purchased 
from Jackson Laboratories (Bar Harbor, ME, USA). We 
have generated and extensively characterized multiple 
lines of SSPN-transgenic mdx mice expressing either 
human SSPN (hSSPN, line 3, approximately 3-fold 
expression) [35] or murine SSPN (mSSPN, line 28, 
approximately 30-fold expression) [30] that are outlined 
in Supplementary Table  1. The SSPN transgenes were 
all under the control of the human skeletal α-actin pro-
moter. hSSPN and mSSPN exhibit a high degree of iden-
tity (> 85%) at the amino acid level, effectively ameliorate 
mdx pathology, and were included in the study with the 
rationale that overlapping findings from different trans-
genic lines would strengthen their relevance. All mouse 
colonies were granted by the UCLA Animal Welfare 
Assurance (approval no. A3196-01).

Poly‑A‑enriched RNA sequencing
Liquid nitrogen frozen tibialis anterior muscles from 
12-week-old male wild-type, mdx, and mdxTG (line 28) 
were pulverized in a mortar and pestle cooled by liquid 
nitrogen and homogenized into TRIzol (Thermo Fisher 
Scientific, Waltham, MA, USA) using syringe homog-
enization with a 21g needle. RNA was extracted using 
TRIzol phase separation followed by QIAGEN RNeasy 
column purification using the manufacturer’s instruc-
tions (QIAGEN, Hilden, Germany), followed by DNase 
treatment. RNA concentration and quality were meas-
ured using the TapeStation 4200 (Agilent Technologies, 
Santa Clara, CA, USA). RNA-Seq libraries were pre-
pared from total RNA using the TruSeq Stranded mRNA 
Library Prep Kit (Illumina, San Diego, CA, USA). High-
throughput sequencing was performed at UCLA Tech-
nology Center for Genomics & Bioinformatics using the 
Illumina HiSeq 4000 platform (paired-end 75 bp reads). 
Demultiplexing was performed with Illumina Bcl2fastq2 
v 2.17 program. The total numbers of sequenced reads 
were 53–67 million per sample. RNA-Seq reads were 
mapped to the mouse reference genome (mm10) using 
STAR [45]. For each sample, 86% of reads were uniquely 

mapped to the genome. Expression levels were quantified 
for annotated genes (Ensembl v.92), and raw gene counts 
were normalized to CPM values (counts per million). The 
analysis was focused on genes with CPM > 1 in at least 
two samples (13,846 genes). Differential expression anal-
ysis was performed using edgeR-QLF [46]. Differentially 
expressed genes (DEGs) were identified at 1% FDR and 
fold-change > 2.

Mass spectrometry
The mass spectrometry dataset was first published in part 
in Stearns-Reider et  al. [47]. Quadricep muscles were 
harvested from 20-week-old male wild-type, mdx, and 
mdxTG (line 3) mice and snap frozen in liquid nitrogen. 
Samples were then prepared for mass spectrometry anal-
ysis as previously described [48]. In short, samples were 
pulverized in liquid nitrogen and lyophilized. For each 
sample, 5 mg (dry weight) of tissue was homogenized 
in 200 mL/mg high-salt buffer (HS buffer) containing 
a 1× protease inhibitor [48]. Following three rounds of 
HS buffer wash, pellets were treated with 6 M guanidine 
extraction buffer. The remaining pellets from each tis-
sue, representing insoluble ECM proteins, were digested 
with freshly prepared hydroxylamine buffer, as previously 
described [49]. A total of 100 μl of the cellular fraction 
(combined fractions 1, 2, and 3) and 200 μl of the soluble 
and insoluble ECM fractions were enzymatically digested 
with trypsin using a filter-aided sample prep approach 
and C18 tip cleanup. Samples were then analyzed by liq-
uid chromatography-data-dependent acquisition tandem 
mass spectrometry (LC-MS/MS), as previously described 
[50]. Samples were analyzed on a Q Exactive HF Orbitrap 
mass spectrometer (Thermo Fisher Scientific) coupled 
to an EASY-nanoLC 1000 system through a nanoelec-
trospray source. The analytical column (100 μm i.d. × 
150 mm fused silica capillary packed in house with 4 μm 
80 Å Synergi Hydro C18 resin (Phenomenex; Torrance, 
CA, USA)) was then switched online at 600 nL/min for 
10 min to load the sample. The flow rate was adjusted 
to 400 nL/min, and peptides were separated over a 120-
min linear gradient of 2–40% ACN with 0.1% FA. Data 
acquisition was performed using the instrument supplied 
Xcalibur (Thermo Fisher Scientific, San Jose, CA, USA) 
software in positive ion mode. MS/MS spectra were 
extracted from raw data files and converted into mgf files 
using a PAVA script (University of California, San Fran-
cisco, MSF, San Francisco, CA, USA). These mgf files 
were then independently searched against mouse Swiss-
Prot database using an in-house Mascot server (version 
2.2.06; Matrix Science, London, UK). Mass tolerances 
were +/−10 ppm for MS peaks and +/−0.5 D for MS/
MS fragment ions. Trypsin specificity was used allowing 
for one missed cleavage. Met oxidation, pro-oxidation, 
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protein N-terminal acetylation, and peptide N-terminal 
pyroglutamic acid formation were allowed for variable 
modifications, whereas carbamidomethyl of Cys was set 
as a fixed modification. Following Mascot searches, data 
was directly loaded into Scaffold™ (Proteome Software 
Inc.). Peptide spectral matches were directly exported 
with a 99% confidence in protein identifications and at 
least 2 unique peptides per protein, resulting in a false 
discovery rate of 0.54%. Two-group comparisons were 
done by two-tailed Student’s t-tests. Partial least squares-
discriminant analysis (PLSDA) was performed using 
MetaboAnalyst (version 3.0) with sum and range scaling 
normalizations.

Indirect immunofluorescence staining of muscle sections
Transverse cryosections (10 μm) from the quadriceps 
muscles of wild-type, mdx, and mdxTG (line 3) mice at 
3–5 months of age were incubated in blocking buffer 
(3% BSA in phosphate-buffered saline (PBS)) for 30 min 
at room temperature. Avidin/biotin blocking kit (Vector 
Laboratories, Newark, CA, USA) was used according to 
manufacturer’s instructions. Sections were then incu-
bated with the following primary antibodies diluted 1:200 
in PBS overnight at 4 °C: β-spectrin non-erythrocyte 
(PA5-52970, Thermo Fisher Scientific, Waltham, MA, 
USA), collagen type II (ab34712, Abcam, Waltham, MA, 
USA), and collagen type V (ab7046, Abcam, Waltham, 
MA, USA). Yap1 primary antibody (nb110-58358, Novus 
Biologicals, Centennial, CO, USA) was diluted 1:250. 
Sox9 antibody (AB5535, Sigma, St. Louis, MO, USA) 
was diluted 1:100. Sections were washed in PBS for 3 × 
30 min at room temperature. Primary antibodies were 
detected by biotinylated anti-rabbit (BA-1000; 1:500; 
Vector Laboratories, Newark, CA, USA). Fluorescein-
conjugated avidin D (A-2001; 1:500; Vector Laboratories) 
was used to detect secondary antibodies. Sections were 
mounted in Vectashield (Vector Laboratories, Newark, 
CA, USA), and imaging was performed using a Zeiss Axio 
Imager M2 (Carl Zeiss Inc., Thornwood, NY, USA) with a 
Hamamatsu ORCA-Flash 4.0 V3 digital complementary 
metal oxide semiconductor camera and a plan-Apochro-
mat 20×/0.8 M27 objective. Percent nuclear Yap1 was 
quantified by counting Yap1-positive nuclei, with clear 
Yap1/DAPI overlap, divided by total DAPI content in five 
20× fields per view per biological sample. Quantification 
of immunofluorescence analysis was performed on 20× 
images using ImageJ software (NIH, version 1.50i) for 
collagen II, collagen V, and β-spectrin by line scan anal-
ysis and Sox9 by measuring the integrated intensity in 
4–12 images per genotype. For line scan measurements, 
using the line drawing tool on ImageJ, 40 areas of inter-
est per biological replicate were quantified. Lines were 
drawn along or perpendicular to positive-stained areas, 

and peak intensity values were plotted denoted as “max” 
measurement on ImageJ.

Gene ontology and ingenuity pathway analysis
Gene ontology (GO) enrichment analysis for RNA 
sequencing and proteomic data sets was performed using 
the PANTHER classification system online user inter-
face [51] and the statistical overrepresentation test. Fold 
enrichment values and p-values from the overrepresen-
tation test were plotted using GraphPad Prism. RNA 
sequencing and proteomic data sets were also analyzed 
through the use of ingenuity pathway analysis (QIAGEN) 
for generating networks and upstream regulators [52]. 
Upstream regulators were sorted by activation score, 
and the top five inhibited and activated regulators were 
reported with corresponding target genes identified in 
the data sets.

Integrated gene set enrichment analysis
Significantly differentially expressed transcripts and pro-
teins between mdx and mdxTG were pooled as input for 
integrated gene set enrichment analysis using Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID, version 2021). Each molecule was categorized 
as unrestored (significantly different from wild type, not 
significantly different from mdx), restored (significantly 
different from mdx, not significantly different from wild 
type), or compensatory (significantly different from both 
wild type and mdx). Data were visualized on Cytoscape 
version 3.9.1.

Supplementary figure methods
For a systems level network analysis, DEGs from the 
three identified categories (restored, unrestored, com-
pensatory) were analyzed using the Database for Anno-
tation, Visualization and Integrated Discovery platform 
(DAVID, version 2021). This analysis was also performed 
with the proteomic data set. Gene Ontology (GO) terms 
with corresponding parameter thresholds of p < 0.05 and 
minimum gene count = 2 were used as input and visuali-
zation in Cytoscape with the EnrichmentMap plugin.

Results
Gene expression and proteomic analyses reveal 
compensatory and restored pathways
In the current study, our goal was to interrogate the 
effects of SSPN overexpression on gene and protein 
expression in mdx muscle relative to wild-type and mdx 
(non-transgenic) controls. Gene expression analysis 
was performed using traditional poly-A-enriched RNA 
sequencing of tibialis anterior muscles isolated from 
12-week-old wild-type, mdx, and mdxTG mice. Principal 
component analysis of the sequencing data reveals clear 
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clustering of each genotype (Fig. 1a). In comparing paired 
genotypes, we identified 1073 DEGs (853 upregulated, 
220 downregulated) in wild-type versus mdx muscle and 
748 DEGs (471 upregulated, 277 downregulated) in mdx 
relative to mdxTG samples. The largest difference in the 
transcriptomic profile was evident between wild type and 
mdxTG with 1857 DEGs (1306 upregulated, 551 down-
regulated). Heat map analysis of DEGs in mdxTG relative 
to controls (Fig. 1b) reveals patterns that can be catego-
rized as follows: (1) unrestored (significantly different 
from wild type, not significantly different from mdx), 
(2) restored (significantly different from mdx, not sig-
nificantly different from wild type), and (3) compensatory 
(significantly different from both wild type and mdx).

Given the effects of SSPN overexpression on DEGs, 
we next investigated the influence of SSPN on protein 
expression utilizing a mass spectrometry approach that 
improves capture of typically insoluble ECM proteins 
[47, 53]. From our proteomics analysis of wild-type, mdx, 
and mdxTG quadriceps muscle, we identified a total of 
1679 proteins in all three genotypes. Principal compo-
nent analysis revealed distinct clustering of the wild-type, 

mdx, and mdxTG samples (Fig.  1c). Similar to the RNA 
sequencing data, we found sets of proteins in restored, 
unrestored, and compensatory categories (Fig. 1d).

Pathway enrichment analysis identifies compensatory 
changes in fibrillar collagens and components of the actin 
cytoskeleton
Comparative analysis of enriched GO pathways in the 
transcriptomic and proteomics data sets revealed seven 
shared pathways, including those associated with ECM 
organization, extracellular structure organization, 
and cytoskeleton organization (Fig.  1e). By separating 
enriched GO pathways into the compensatory, restored, 
and unrestored subcategories for both transcriptomic 
and proteomic data sets, we observed additional path-
ways of interest such as those associated with calcium 
ion binding, NAD/NADP binding, ubiquitin ligase bind-
ing, and oxidoreductase binding (Supplementary Fig. 1). 
Given the identification of the broader categories of ECM 
organization and cytoskeleton organization identified 
in the mdxTG model through GO pathway analysis, we 
curated lists of actin cytoskeleton- and ECM-associated 

Fig. 1 Overview of RNA sequencing and mass spectrometry reveals distinct transcriptomic and proteomic profiles of SSPN overexpression rescue. 
a Principal component analysis (PCA) of RNA sequencing data in wild type (WT, n = 5), mdx (n = 4), and mSSPN transgenic (mdxTG, n = 4) tibialis 
anterior muscle at 12 weeks of age. b Heat map of DEGs. c PCA of mass spectrometry data from WT (n = 5), mdx (n = 5), and hSSPN transgenic 
(mdxTG, n = 5) quadriceps muscle at 20 weeks of age. d Heat map of differentially expressed proteins (DEPs). e Overlap of Gene Ontology (GO) 
terms enriched in WT vs mdxTG in transcriptomics vs proteomics data using PANTHER GO analysis platform
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genes in the RNA sequencing data set based on GO cat-
egories and subsequently visualized this data using tradi-
tional heat maps. The actin cytoskeleton and ECM genes 
clustered into restored, unrestored, and compensatory 
categories. It is noteworthy that the compensatory genes 
represent the largest category of DEGs in this compari-
son (Fig. 2a–b, Supplementary Tables 2, 3).

We next analyzed the expression of ECM and 
cytoskeletal proteins from the mass spectrometry data 
set. ECM proteins were classified into 8 functional cat-
egories, including (1) structural ECM, (2) other ECM, 
(3) network collagen, (4) matricellular, (5) fibrillar col-
lagen, (6) fibril-associated collagens with interrupted 
triple helices (FACIT), (7) ECM regulator, and (8) 
basement membrane proteins (Fig.  3a). Cytoskeletal 
proteins were classified into 9 functional categories, 
including (1) actins and microfilaments, (2) actin-
associated, (3) tubulins, (4) microtubule associated, 
(5) annexins, (6) intermediate filaments, (7) spectrins, 
(8) myosins, and (9) sarcomere-associated proteins 

(Fig.  3b). ECM regulators and fibrillar collagens were 
upregulated in mdxTG compared to both wild-type and 
mdx muscles (Fig.  3a). For cytoskeletal proteins, we 
observed significant downregulation in actins, micro-
filaments, and actin-associated proteins, as well as 
decreased abundance of myosins and other sarcomere-
associated proteins such as tropomyosins and troponin 
I and T (Fig. 3b). Abundance of microtubule-associated 
proteins and spectrins was increased in mdxTG samples 
relative to wild-type controls. Within each functional 
classification, we additionally identified several proteins 
with increased expression in mdxTG muscle compared 
to both wild-type and mdx muscle including cathepsins 
and integrins (Fig.  4a), fibrillar collagens II, V, and XI 
(Fig.  4b), and non-erythrocyte β-spectrin (Sptbn1, 
spectrins, Fig.  4c). Interestingly, some actin isoforms 
and actin-associated proteins were decreased in mdxTG 
muscle compared to both wild-type and mdx muscle 
including skeletal and cardiac α-actins (Acta1, Actc1) 
and α-actinin (Actn3, Fig. 4d).

Fig. 2 SSPN overexpression results in compensatory upregulation of ECM and actin cytoskeleton genes. Heat maps of GO‑term curated ECM genes 
(a) and actin cytoskeleton genes (b) from RNA sequencing data each with restored, unrestored, and compensatory expression patterns in the mdxTG 
muscle. Expanded heat map insets emphasize that compensatory expression patterns are overwhelmingly from upregulated genes in the mdxTG 
muscle
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Proteomic analysis revealed compensatory upregula-
tion of many collagens, including collagen type II (Col2) 
and collagen type V (Col5), along with upregulation 
of Sptbn1. Importantly, recent findings in the golden 
retriever model of DMD (GRMD) revealed spectrin as 
a candidate protein responsible for sparing of the cra-
nial sartorius muscle from dystrophic pathology [54]. 
Spectrin is a mechanosensitive protein that functions 
as a scaffolding protein at the cell membrane to pro-
vide structural and mechanical stability [55]. Addition-
ally, spectrin is a key linker protein in the response to 
mechanical stimuli, coupling changes in cellular tension 
to downstream signaling networks [56, 57]. The com-
pensatory upregulation of spectrin along with fibrillar 
collagens suggests that SSPN overexpression may be res-
cuing the dystrophic phenotype through the alteration of 
mechanotransduction signaling networks.

Ingenuity pathway and gene set enrichment analyses 
support compensation through mechanotransduction 
pathways
To identify candidate networks and upstream regula-
tors that drive compensatory changes in mdxTG mus-
cle, we analyzed the transcriptomic and proteomic data 
sets using the ingenuity pathway analysis (IPA) applica-
tion. Based on the IPA upstream regulator algorithm 
and corresponding activation z-scores and p-values, we 
examined the top ten activated and inhibited upstream 
regulators for each comparison from the RNA sequenc-
ing (Fig.  5a) and mass spectrometry (Fig.  5b) data sets. 
Upon closer analysis of the top five activated and inhib-
ited regulators, we observed many cytoskeletal and ECM 
target molecules (Table  1, Supplementary Tables  4–6, 
targets in bold red). Our analyses reveal that SSPN 
induces large-scale changes in the composition of the 

Fig. 3 Compensatory changes in functional classes of ECM and cytoskeletal proteins in mdxTG muscle. a Graph of the abundance of ECM proteins 
in 8 primary categories relative to WT. b Graph of the abundance of cytoskeletal proteins in 9 primary categories relative to WT (*p < 0.05 compared 
to WT, #p < 0.05 compared to mdx by unpaired t‑test. By category, mdxTG muscle had compensatory expression (both significantly different from 
WT and mdx) of matricellular, ECM regulator, basement membrane, actins/microfilaments, actin‑associated, myosins, and sarcomere‑associated 
proteins
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ECM and cytoskeleton as well as their associated signal-
ing networks. Thus, we sought to integrate data from the 
transcript and protein analysis to develop a more com-
prehensive model reflecting the overlap of signaling net-
works. We performed integrative gene set enrichment 
analysis on the significantly differentially expressed tran-
scripts and proteins between mdx and mdxTG (Fig.  6). 
This comprises the proteins and genes in the compensa-
tory and restored categories. We observed enrichment 
of gene sets associated with signal transduction path-
ways affecting a broad spectrum of cellular and biologi-
cal processes important in myogenesis, regeneration, 
and homeostasis of skeletal muscle involving the Ras, 
Rho, and Wnt signaling, actin-cytoskeleton remodeling 
and organization, and ECM signaling and organization 
(Fig. 6). These include signaling by Rho GTPases, regula-
tion of cytoskeleton organization and cytoskeletal regula-
tion by Rho GTPases, integrin signaling, focal adhesions 
formation, and response to mechanical stimulus (Fig. 6). 
We observed compensatory upregulation of Rho family 
of GTPases involved in mediating actin dynamics and 

actomyosin contractility including Ras homolog gene 
family members (RhoA and RhoC), Rac family small 
GTPase 1 (Rac1), and cell division cycle 42 (Cdc42). 
There are compensatory and restorative changes in sev-
eral factors that regulate Rho GTPase activity including 
the GTPase activating proteins (Arhgap 6, 22, and 44), all 
of which are increased in mdxTG muscle. Wnt proteins, 
including Wnt4 and Wnt5a, play key roles as part of the 
muscle regeneration program, cytoskeletal remodeling, 
and myoblast fusion [58, 59]. Wnt4 regulation of RhoA 
activity is important for maintaining satellite cell qui-
escence [59]. In addition, Wnt5a and Fzd4 (rescued in 
mdxTG) have been shown to regulate osteogenic differen-
tiation after mechanical stretch [60]. R-spondins family 
members 1 and 4 (Rspo1 and Rspo4) positively regulate 
the canonical Wnt signaling pathway and are important 
for muscle repair and regeneration [61–63]. RhoA and 
Rac1 can also be activated by and respond to mechani-
cal stress and stimuli. At focal adhesion sites of integrin 
signaling, these proteins orchestrate actin cytoskeleton 
remodeling important for mechanical force generation 

Fig. 4 Upregulation of ECM regulators, fibrillar collagens, and spectrins in mdxTG muscle. Relative protein expression of ECM regulators (a), fibrillar 
collagens (b), spectrins (c), and actins/microfilaments (d) (*p < 0.05 compared to WT, #p < 0.05 compared to mdx by unpaired t‑test)
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and transmission in concert with talin (Tln2) and vincu-
lin (Vcl) [64]. Several integrin and laminin subunits are 
also alternatively expressed in mdxTG relative to mdx. 
As we have shown previously, integrin alpha 7 (Itga7) is 
increased in mdxTG muscle [27]. The cysteine and gly-
cine-rich protein 3 (Csrp3, also known as muscle LIM 
protein, MLP) is localized at costameres and involved in 
promoting mechanical- and stress-induced myocyte dif-
ferentiation and remodeling [65, 66]. Interestingly, tran-
scription factors JunB and Sox9 are both upregulated in 
mdxTG muscle. JunB is also important for maintaining 
muscle growth and hypertrophy [67]. Sox9, important for 
bone and cartilage formation, is expressed in muscle pro-
genitor cells during development and may play a role in 
musculoskeletal development [68]. Sox9 has been shown 

to be a key regulator of ECM deposition, most specifi-
cally of collagen II [69], which is highly upregulated in 
mdxTG muscle (Fig. 4).

To validate our findings from the mass spectrometry 
data and gene set enrichment analysis, we performed 
immunofluorescence analysis of muscle sections using 
antibodies against collagen II, collagen V, Sptbn1, yes-
associated protein 1 (Yap1), and Sox9 (Fig.  7). Immu-
nofluorescence analysis and quantification validate the 
mass spectrometry data showing increased collagens 
II and V and Sptbn1 in mdxTG compared to WT and 
mdx muscle (Fig. 7a–b). The Hippo-Yap1 network also 
plays a significant role in the response to mechanical 
stimuli with potential implications in muscle develop-
ment and homeostasis following Yap1 translocation 

Fig. 5 Activated and inhibited upstream regulators identified in wild‑type, mdx and mdxTG muscle through ingenuity pathway analysis. Ingenuity 
pathway analysis (IPA) of RNA sequencing data (a) and mass spectrometry data (b) identifying the top 10 upstream regulators that are activated 
(z‑score, red bars) or inhibited (z‑score, blue bars) with −log p‑values overlaid in black. Comparisons include WT vs mdx (left graphs), WT vs mdxTG 
(middle graphs), and mdx vs mdxTG (right graphs)
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to the nucleus [57, 70]. To gain further insight on this 
downstream mechanotransduction signaling pathway, 
we quantified the percentage of nuclear Yap1 transloca-
tion following indirect immunofluorescence and found 
an increase in mdxTG muscle relative to WT and mdx 
muscle (Fig. 7c, Supplemental Fig. 3). Interestingly, our 
results also indicated profound sarcolemmal localiza-
tion of Yap1 in mdxTG muscle. Furthermore, immu-
nofluorescence analysis of muscle sections reveals 
increased Sox9 protein in mdxTG muscle, and that in 
addition to nuclear localization, Sox9 is abundant at the 
sarcolemma and neuromuscular junction where it co-
localizes with α-bungarotoxin (Fig. 7c). While Yap1 and 
Sox9 typically localize to the cytoplasm and/or nucleus, 
previous reports have also described sarcolemmal and 
connective tissue localization in muscle [70–72]. Over-
all, our analyses indicated that SSPN overexpression in 
dystrophin-deficiency results in a rewiring of signaling 
networks associated with cell-matrix communication 
and mechanotransduction.

To visualize the differential expression pattern of the 
key components of the ECM and cortical cytoskeleton, 
we prepared a schematic from both transcriptomic and 
proteomic perspectives using a color key (Fig.  8). As 
shown in the summary figure, the differential expression 
pattern of many of the key players of mechanotransduc-
tion at the cell-matrix interface reveals the compensatory 
effects of SSPN overexpression.

Discussion
In our multi-omics approach to identifying mechanisms 
of SSPN amelioration of dystrophic pathology, we built 
on previous comparative transcriptomic and proteomic 
studies that have identified the molecular changes in 
mdx muscle throughout progression of disease in muscle 
groups that are differentially affected by disease [37, 40, 
42, 73]. Our approach combines RNA sequencing tran-
scriptomics with ECM-optimized capture techniques to 
identify SSPN-induced cellular pathways. Findings from 
our proteomic analysis reveal compensatory alterations 
in the abundance of collagens in mdxTG muscle, espe-
cially the highly glycosylated collagens II, V, and XI. Col-
lagen is the most abundant protein in the ECM, and its 
high tensile strength allows transmission of forces gen-
erated by skeletal muscle fibers. The most abundant col-
lagens in skeletal muscle are collagens I, III, IV, and VI. 
While collagens were upregulated in the mdxTG, they 
were primarily collagens not typically observed in skeletal 
muscle, or those of low abundance, including collagens II, 
V, and XI [74]. Collagen II is typically found in articular 
cartilage and intervertebral discs and is highly glyco-
sylated [75, 76]. Collagen XI is also a component of carti-
lage extracellular matrix [77]. The presence of these bulky 

Table 1 Ingenuity pathway analysis summary — upstream 
regulators
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disaccharide groups is believed to hinder the formation 
of highly ordered fibrils and has been shown to increase 
substrate compliance in co-cultures with collagen I [78]. 
Collagens V and XI are typically observed only during 
skeletal muscle development; however, the function of 

collagen XI in skeletal muscle is unknown. Baghdadi and 
colleagues [79] recently reported that satellite cells pro-
duce collagen V that is critical for the calcitonin recep-
tor and notch signaling cascade, which maintains satellite 
cells in a quiescent state. Taken together, the changes 

Fig. 6 Integrated gene set enrichment analysis identifies differential expression of mechanosignaling pathways in mdxTG. To develop an integrated 
model of overlapping signaling networks driving rescue of the mdxTG skeletal muscle, we combined transcripts (diamonds) and proteins (ovals) 
that were differentially expressed between mdx and mdxTG tissue and performed gene set enrichment analysis. Compensatory changes are in pink, 
restored changes are in green, and uncategorized changes are in gray. The gene set enrichment analysis highlights changes in Rho, Rac, Wnt, and 
integrin signaling in addition to cell adhesion and response to mechanical stimulus
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observed in the mdxTG ECM suggest that upregulation of 
these developmental and cartilaginous collagens may be 
beneficial to muscle.

The identification of β-spectrin upregulation as 
another potential compensatory protein is supported 
by data from the GRMD dog model of DMD. Nghiem 
and colleagues [54] identified spectrin as a candidate 
protein in a study of the cranial sartorius muscle that 

is spared from dystrophic pathology through com-
pensatory hypertrophy via myostatin signaling. Spec-
trin is a scaffolding protein that functions to localize 
and stabilize surface proteins in nonerythroid cells, 
anchoring them to the cytoskeletal actin network [80]. 
The repeated triple helical units of the spectrin rod 
domain would support this function by stabilizing sur-
face proteins and mediating cell-matrix and cell-cell 

Fig. 7 Validation of signaling and mechanosensitive pathways increased in mdxTG muscle. Indirect immunofluorescence analysis and quantification 
of 12‑week‑old mouse quadriceps using antibodies against (a) collagen II (Col II) and collagen V (Col V), (b)β‑spectrin (Sptbn1), (c) yes‑associated 
protein 1 (Yap1) and SRY‑Box transcription factor 9 (Sox9) showing increased abundance in mdxTG relative to both WT and mdx. Sox9 is expressed at 
the neuromuscular junction shown by co‑localization with α‑bungarotoxin (α‑BgTx). Statistical analyses were performed by one‑way ANOVA with 
Tukey’s multiple comparison tests, n = 3–4 biological replicates per genotype, data represented as +/− SEM (*p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001). Scale bar = 100 μm
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interactions. Interestingly, dystrophin contains similar 
spectrin-like repeats in its central rod domain and has 
been reported to bind spectrin [81–83]. Data from the 
IPA and gene enrichment analysis also identify spec-
trin as a target molecule of signaling pathways associ-
ated with a reorganization of the actin cytoskeleton. 
Together, the upregulation of collagens and scaffold-
ing cytoskeletal components such as spectrin suggests 
that SSPN overexpression and the increase of adhesion 
complexes at the membrane may induce a rewiring 
of signaling between the ECM and the cytoskeleton 
to stabilize the sarcolemma during contraction and 
enhance mechanotransduction in order to improve 
force transmission.

Mechanotransduction has been described in the 
mdx mouse model in many studies that highlight the 
role of microtubules, adhesion complexes, mecha-
nosensitive ion channels, and YAP/TAZ signaling 
in both skeletal and cardiac muscle pathology [70, 
84–89]. Our study corroborates some of these find-
ings at the transcript level when comparing wild-type 
and mdx muscle (Supplementary Fig.  2). At the pro-
tein level, we observed increased Yap1 localization 
in the nucleus of mdxTG muscle (Fig. 7). Spectrin has 
also been shown to be a linker protein that couples 
mechanical stimuli to downstream signaling networks, 
including Hippo-YAP/TAZ pathway [56, 57]. Together, 
these data suggest that SSPN is improving force 
transmission in part through spectrin-Yap1 mecha-
notransduction pathways. Our gene set enrichment 

analysis revealed potential candidate alternative path-
ways involved in mechanotransduction through regu-
lation of cytoskeleton, focal adhesion, and integrin 
signaling (Fig. 6). Notably, we identified compensatory 
changes in RhoA, Rac, and Wnt signaling molecules in 
the mdxTG muscle. Reciprocal cross talk between the 
Wnt, Rho GTPase, and the integrin complex medi-
ates cell adhesion signaling cascades and regulation of 
the cytoskeleton [90–92]. Integrins are bidirectional 
mechano-transducers that detect mechanical cues and 
translate these signals to affect intracellular and extra-
cellular behavior and response. Through its interac-
tion with adaptor proteins at sites of focal adhesion, 
the integrin complex regulates the dynamic, cyclic, 
spatial, and temporal activation of RhoA, Rac1, or 
Cdc42 leading to actin polymerization and depolym-
erization which drives force propagation, cell motility, 
and contractility [90, 93, 94]. RhoA, through down-
stream effectors, stabilizes actin filaments and regu-
lates the activity of cofilin 2 (CFL2) which together 
with WD repeat-containing protein 1 (Wdr1) engages 
in depolymerization and severing of actin filaments, 
important to replenishing the actin monomer pool, 
while Rac1 and cdc42 are involved with activation 
of Wiskott-Aldrich syndrome protein family mem-
ber 1 (Wasf1) and Abl interactor 2 (ABI2), members 
of the WAVE complex, to promote actin nucleation 
and branching [95]. Obscurin (Obscn), a sarcom-
eric rho-guanine nucleotide exchange factor [96], has 
been shown to activate RhoA in skeletal muscle [97]. 

Fig. 8 SSPN overexpression rewires ECM‑cell communication. Schematic summarizing ECM and cytoskeletal changes in RNA sequencing and 
proteomic data sets. Changes in gene or protein expression are represented by color according to the key, indicating compensatory upregulation of 
many ECM and cytoskeletal molecules with downstream signaling effects (in purple). The x‑ and y‑axes in the color key correspond to mdxTG relative 
to WT and mdxTG relative to mdx, respectively
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Adducin 2 (Add 2) functions to cap the barbed end of 
actin filaments and is involved with recruiting spec-
trin tetramers to actin filaments [98, 99]. Rac1 and 
cdc42 have also been reported to signal through the 
DGC complex and may be downregulated during mus-
cle atrophy [100]. Furthermore, RhoA, in addition to 
Rac1 and Cdc42, regulate transcription by SRF [101]. 
Interestingly, the transcription factor SRF is in one of 
the top five significantly inhibited/affected upstream 
regulators in our IPA analysis between mdx and 
mdxTG (Table 1). Additionally, we identified compen-
satory changes in Sox9 in mdxTG muscle with the gene 
set enrichment analysis, and we validated this at the 
protein level. Sox9 has been identified as a key tran-
scription factor involved in ECM deposition in carti-
lage tissue, specifically collagen II [69]. Our findings 
of compensatory changes in muscle of other cartilage-
related proteins including collagen II and collagen XI 
are novel and suggest a possible new mechanism of 
improved force transmission in dystrophic muscle.

Conclusions
We generated a data-driven schematic of the mdx muscle 
rescued by SSPN overexpression that highlights compen-
satory changes in the ECM and cytoskeleton at both the 
transcript and protein level (Fig. 8). Our multi-omics data 
suggest that SSPN rescues dystrophin deficiency partially 
through a rewiring of cell-matrix interactions that may 
enhance mechanotransduction signaling cascades and 
improve lateral force transmission.
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