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Abstract 

Skeletal muscle homeostasis and function are ensured by orchestrated cellular interactions among several types of 
cells. A noticeable aspect of skeletal muscle biology is the drastic cell–cell communication changes that occur in 
multiple scenarios. The process of recovering from an injury, which is known as regeneration, has been relatively well 
investigated. However, the cellular interplay that occurs in response to mechanical loading, such as during resistance 
training, is poorly understood compared to regeneration. During muscle regeneration, muscle satellite cells (MuSCs) 
rebuild multinuclear myofibers through a stepwise process of proliferation, differentiation, fusion, and maturation, 
whereas during mechanical loading‑dependent muscle hypertrophy, MuSCs do not undergo such stepwise pro‑
cesses (except in rare injuries) because the nuclei of MuSCs become directly incorporated into the mature myonuclei. 
In this review, six specific examples of such differences in MuSC dynamics between regeneration and hypertrophy 
processes are discussed.
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Background
Skeletal muscle is a dynamic tissue that presents excel-
lent regenerative ability and plasticity in response to 
external and internal changes, and both processes rely on 
myogenic-committed cells that reside in skeletal muscle, 
which are known as muscle satellite cells (MuSCs) [1–4]. 
MuSCs remain in a quiescent state under steady condi-
tions [5] but start proliferating in response to damage or 
skeletal muscle loading. MuSC behavior is affected by 
multiple cell types, including myofibers, immune cells, 
and interstitial cells, including endothelial cells and mes-
enchymal progenitors (FAPs: fibro/adipogenic progeni-
tors) (Figs. 1 and 2) [6–11]. Compared to the process of 
muscle regeneration, the mechanism regulating MuSC 
dynamics under muscle loading (such as a resistance 
training) has not been well investigated. However, recent 

studies have analyzed the mechanisms underlying MuSC 
proliferation and cell–cell communication in loaded 
muscles [9, 10, 12, 13]. We briefly summarize the pro-
cess of muscle regeneration and load-dependent muscle 
hypertrophy according to key factors underlying MuSC 
behaviors and discuss six differences in MuSC dynamics 
and cell–cell interactions between the regeneration and 
hypertrophy processes.

Muscle regeneration
When a myofiber is damaged, MuSCs exit from the qui-
escent state and become activated and proliferate (Fig. 1). 
MuSC activation follows after the expression of myoblast 
determination protein 1 (MyoD) [14, 15]. Subsequently, 
genes that regulate the cell cycle are upregulated and 
the cells begin to proliferate. In  vitro experiments have 
revealed that approximately 2 days are required for the 
first cell division of quiescent MuSCs [16]. The subse-
quent cell division rate, which is estimated to be 12 h 
in vitro, is considerably faster than the initial cell division 
rate [16]. In a cardiotoxin (CTX)-induced muscle injury 
model in C57BL/6 mice, day 3 after injury corresponds 
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to the peak number of proliferating myoblasts (daughter 
cells of MuSCs) [17] while day 4 after injury corresponds 
to the abundant production of immature myofibers called 
myotubes, which are generated by myoblast–myoblast 
and myoblast–nascent myotube fusion (Fig.  1). Active 
myoblast-dependent myotube growth occurs from days 
5–10 postinjury [17]. During this process, MuSCs pre-
sent a self-renewal capacity that maintains the number of 
MuSCs and ensures their ability to repeatedly regenerate 
after future damages. Although the exact timing of MuSC 
self-renewal is unknown, studies have suggested that self-
renewal determination occurs in the mid-regeneration 
period (approximately 4–5 days after injury) [17, 18]. In 
addition, Pawlikowski et al. reported that the majority of 
MuSC self-renewal occurs between days 5 and 7 postin-
jury since EdU-labeling experiments demonstrated that 

the last MuSC division occurred during regeneration 
in this period [19]. In mice with CTX-induced muscle 
injury, myofibers are rebuilt to their original size approxi-
mately 2–3 weeks after injury (Fig. 1).

For efficient MuSC proliferation and differentiation, 
inflammatory cells, mesenchymal progenitors, and basal 
lamina are required [7, 20–22]. The infiltration of neu-
trophils is observed within 12 h [23], although the pri-
mary infiltrating cells subsequently shift to macrophages, 
which clean up dead myofibers [24]. Consequently, the 
space for MuSC proliferation is ensured. In the early 
stages of muscle regeneration, inflammatory M1 mac-
rophages are the main subset, and they are then replaced 
by anti-inflammatory M2 macrophages (Fig. 1) [25]. Both 
macrophages and mesenchymal progenitors contribute 
to MuSC proliferation [6, 7, 24]. Similar to MuSCs, the 

Fig. 1 Process of skeletal muscle regeneration. When myofibers are damaged or dead, their debris is removed by inflammatory macrophages (M1 
Mø). Using spaces and factors derived from macrophages and mesenchymal progenitors (FAPs), muscle satellite cells (MuSCs) actively proliferate 
(early stage). In the middle stage of regeneration, anti‑inflammatory macrophages (M2 Mø) support the regulation of myogenic differentiation and 
nascent myofibers (myotubes), which grow to mature myofibers (late stage)
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number of mesenchymal progenitors and macrophages 
reach their peak approximately 3 days after CTX injec-
tion and then return to their original number [26].

Muscle hypertrophy
The crucial feature of overload-induced skeletal mus-
cle hypertrophy is an increase in myofiber size, which 
requires two events: an increase in protein synthesis and 
then an increase in myofiber nuclei [27, 28]. The insulin-
like growth factor 1 (IGF1)-Akt-mammalian target of 
rapamycin (mTOR) pathway is a well-known protein syn-
thesis pathway. Akt also suppresses the Forkhead box O 
(Foxo) transcription factor, thereby inhibiting the ubiqui-
tin–proteasomal and autophagic/lysosomal pathways [29, 

30]. Other pathways, such as calcium signaling, have also 
been reported to activate mTOR [31], and these pathways 
were extensively summarized in our recent review [28].

An increased number of myonuclei by MuSCs is also 
required for efficient muscle hypertrophy (Fig.  2). Mice 
depleted of MuSCs did not exhibit increases in myonu-
clei [3, 32], indicating that myonuclei accretion, as well 
as myofiber generation, absolutely depends on MuSCs 
[1, 2]. The need for an increased number of myonuclei in 
muscle hypertrophy or MuSCs had been debated for two 
decades [3, 33, 34]. Although experimental conditions 
or methodologies may obscure the effect of increased 
myonuclei on the efficiency of muscle hypertrophy over 
relatively short-term (2–3 weeks) periods after surgical 

Fig. 2 Process of mechanical‑loaded muscle hypertrophy. In unloaded muscles, Yap/Taz is distributed in the cytoplasm of mesenchymal 
progenitors. Mechanical loading induces nuclear localization of Yap/Taz in mesenchymal progenitors, and MuSCs subsequently proliferate beneath 
the basal lamina by the mesenchymal progenitor‑derived factor thrombospondin‑1 (Thbs1). Proliferated MuSCs fuse with myofibers, which leads to 
an increased number of myonuclei. Notably, the new myonuclei are located in the peripheral position of myofibers
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mechanical loading [9, 32], all recent studies have dem-
onstrated that an increase in the myonuclei number is 
critical for long-term (>8 weeks) muscle hypertrophy 
[9, 28, 35]. Moreover, the increased myonuclear number 
and protein synthesis during muscle hypertrophy are 
coordinated because the disruption of new myonuclear 
accretion in overloaded muscle results in reduced Akt 
activation and downstream signaling [36]. Collectively, 
the data indicate that myonuclear accretion is required 
for sustained functional growth.

In our tenotomy-induced overloaded model, MuSCs 
started to express Ki67 at 2 days and substantial MuSC 
proliferation was observed approximately 4 days after 
surgery. Although the number was small, new MuSC-
derived myonuclei were detected 4 days after tenotomy, 
and the number of MuSC-derived myonuclei gradually 
increased at least 2 weeks after surgery [12]. In loaded 
muscle, MuSC proliferation and differentiation seemed 
to occur concurrently (Fig. 2) [12, 37].

Compared with skeletal muscle regeneration processes, 
studies on cell–cell interactions during loading-depend-
ent muscle hypertrophy are limited because the role 
of MuSCs is linked to their regenerative capacity, even 
in loaded muscle [37]. Undeniably, exercise is a widely 
accepted model of skeletal muscle loading that damages 
myofibers, particularly in rodent models [38]. Equiva-
lent or similar experimental models have also been used 
to study the signaling pathways involved in the hyper-
trophy of living myofibers. Notably, the term “damaged 
myofiber” is based on physiological events (damage to 
the myofibril structures and damage to the myofiber 
sarcolemma with or without myofiber death; thus, in 
this study “damage” refers to “damage causing myofiber 
death”) [37]. In our surgical overload model, the areas of 
dead myofibers were rare, many living myofibers could 
be easily isolated, and MuSC proliferation on myofibers 
was observed from the loaded muscle, indicating that 
MuSC behaviors in the loaded muscles are regulated by 
different pathways compared with the regeneration pro-
cess [12]. Collectively, these results led us to speculate on 
the differences in MuSC dynamics, cell–cell interactions, 
and their mechanism between muscle regeneration and 
hypertrophy processes (Figs. 1 and 2). Six differences are 
discussed below based on a comparison of the processes 
of muscle regeneration and hypertrophy among recent 
and other published studies.

Different activation and proliferation factors
Myofibers provide a specialized environment for MuSCs 
to sustain their undifferentiated and quiescent state. 
Notably, simply detaching MuSCs from myofibers 
may cause their activation and associated gene expres-
sion changes. Machado et  al. demonstrated that the 

expression of early response genes, such as Jun, Egr1, 
and Fosb, is quickly upregulated in isolated MuSCs dur-
ing cell preparation compared to that of bona fide quies-
cent MuSCs [39]. Therefore, during muscle regeneration, 
the loss of myofibers or factors secreted from damaged 
myofibers induce the activation and proliferation of 
MuSCs. For example, the secretion of tenascin-C [40] 
or GAPDH [41] from dead myofibers has been shown to 
induce the activation and proliferation of MuSCs. Several 
macrophage-derived factors (TWEAK, GFD3, GDF15, 
and IGF1) have been identified as regulators of MuSC 
proliferation and differentiation [42–44]. Mesenchymal 
progenitors also express factors that promote MuSC pro-
liferation [6], including a matricellular protein named 
WISP1 (WNT1 inducible signaling pathway protein 
1, also known as Ccn4), whose downregulation during 
aging is involved in the reduced proliferation of MuSCs 
in aged mice [45]. In addition, mesenchymal progeni-
tors are critical for the infiltration of hematopoietic cells, 
including macrophages, into damaged muscles [6]. Col-
lectively, the interplay among mesenchymal progenitors, 
macrophages, and MuSCs is critical for the successful 
progression of muscle regeneration.

On the other hand, the environment of MuSCs in over-
load-dependent muscle hypertrophy is not significantly 
altered because it does not accompany myofiber loss 
(Fig. 2) [37, 46]. Several mechanisms may be responsible 
for inducing the activation and proliferation of MuSCs:

(1) Edema observed in early overloaded muscles [47]
(2) Direct mechanical forces acting on MuSCs
(3) Factors leaked from myofiber wounds that are not 

involved in cell death
(4) Factors secreted from myofibers in a mechanical 

force-dependent manner

Additional factors may also be considered. Recently, in 
surgically overloaded plantaris muscles, we found that 
mesenchymal progenitors are critical for efficient muscle 
hypertrophy by regulating MuSC proliferation (Fig. 2) [9]. 
In this model, an initial, likely edema-induced, increase in 
muscle weight in mesenchymal progenitor-depleted mice 
was comparable to that observed in control mice. Mean-
while, the activation and proliferation of MuSCs were 
severely impaired by the loss of mesenchymal progeni-
tors, suggesting that edema is unlikely to induce MuSC 
activation and proliferation [9]. In addition, the ability 
of MuSCs to directly sense mechanical forces should be 
similar in control and mesenchymal progenitor-deficient 
mice, making it unlikely that (1) and (2) alone would 
induce MuSC proliferation. Although strictly distinguish-
ing (3) from (4) may be difficult, the ability of myofiber-
derived factors to affect the proliferation and dynamics of 
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MuSCs in loaded muscles has been clarified. Myofiber-
derived IL-6 has been well investigated as an exercise-
dependent factor that promotes MuSC proliferation [48, 
49]. Succinate acid from exercised myofibers also affects 
MuSC gene signatures [50]. The relevance of mesenchy-
mal progenitors and myofibers should be further inves-
tigated to reveal the entire mechanism that regulates 
MuSC activation and proliferation in loaded muscles.

We also found that mesenchymal progenitors secrete 
various growth factors in response to increased mechani-
cal force via Yap1/Taz (Fig. 2), which are known as mech-
ano-transducers [9]. In particular, we demonstrated that 
thrombospondin-1 (Thbs1), a member of the matricel-
lular protein family derived from mesenchymal progeni-
tors through Yap1/Taz, promotes MuSC proliferation by 
stimulating CD47 expressed on MuSCs in loaded muscle 
(Fig.  2) [9]. Mesenchymal progenitors actively prolifer-
ate in damaged muscles but show limited proliferation in 
overloaded muscles, suggesting that their dynamics differ 
between regenerating and hypertrophic muscles. Mean-
while, our RNA-seq data indicate that mesenchymal 
progenitors from loaded muscle also express WISP1 and 
chemokines that recruit inflammatory cells [9], suggest-
ing that, in part, mesenchymal progenitors have common 
functions between regenerating and overloaded muscles. 
Further studies are required to reveal cell–cell communi-
cations, including the mesenchymal progenitor–myofiber 
or mesenchymal progenitor–macrophage axis.

Differences in proliferation sites
MuSCs proliferate at different locations during muscle 
regeneration and hypertrophy. In regenerating muscle, 
macrophages clean up dead myofibers while the basal 
lamina that surrounds myofibers is retained. MuSCs pro-
liferate beneath the retained basal lamina, called ghost 
myofiber [22]. Ghost fibers are essential for MuSCs to 
proliferate as a scaffold because muscle regeneration is 
delayed when ghost fibers are destroyed by ficin, which 
is a protease from fig trees [51]. In the middle of mus-
cle regeneration (4–5 days after CTX injection), approxi-
mately 15% of Pax7-positive cells are located in the 
interstitial area, and doublecortin (the mutation is known 
to cause human lissencephaly) allows them to migrate 
into the basal lamina [17]. The characteristics of intersti-
tial MuSCs, particularly their self-renewal ability, remain 
to be clarified.

Although MuSCs proliferate in the space between the 
basal lamina and sarcolemma during muscle hypertrophy 
[12], Pax7-positive cells have not been observed in the 
interstitial space. To examine whether MuSCs proliferate 
on living myofibers, we isolated and analyzed myofibers 
from overloaded muscles 4 days after tenotomy and suc-
ceeded in observing clusters of proliferating MuSCs on 

myofibers from overloaded muscle [12]. Myofibers easily 
die during the isolation process if they sustain any dam-
age. Therefore, the clusters of MuSCs observed on imme-
diately isolated myofibers provide proof that MuSCs 
proliferate on living and non-damaged myofibers in vivo.

Differential expression of myogenic regulatory 
and Notch‑related genes
As previously described, the expression of MyoD, a 
member of the myogenic regulatory factor family, is used 
to define MuSC activation.  Compared to activated and 
proliferating MuSCs, the transcript level of MyoD is very 
low in quiescent MuSCs, in which canonical Notch sign-
aling is higher. Of note, MyoD transcription partly occurs 
even in quiescent MuSCs, and the intron is retained to 
prevent the production of mature MyoD mRNA [52]. As 
MyoD repression by Notch signaling occurs at the tran-
scriptional level, MyoD protein expression is repressed 
in MuSCs at both translational and transcriptional levels 
via Notch signaling and intron-retaining mechanisms. 
During MuSC isolation, the downregulation of Notch-
related genes and MyoD intron-retained transcripts 
was observed [52, 53]. Considering that the loss of the 
Notch ligand Dll4 on myofibers leads to increased MyoD 
expression in quiescent MuSCs [54], these results also 
indicate that the induction of MyoD protein expression 
is an early event in MuSC activation by detachment from 
myofibers.

In overloaded muscles, MyoD is not expressed in pro-
liferating MuSCs or is expressed at a low level that can-
not be detected by antibodies [12]. Canonical Notch 
signaling is also a considerable mechanism for suppress-
ing MyoD expression in proliferating MuSCs on loaded 
myofibers. In fact, representative and functional Notch 
signaling target genes in MuSCs, such as HeyL and 
Col5a1 [55, 56], are persistently expressed in proliferating 
MuSCs in overloaded muscles [12]. Notably, the expres-
sion of Hey1, which is another representative Notch 
signaling target gene [55], was decreased in proliferating 
MuSCs. As the expression of Hey1 is also present at high 
levels in quiescent MuSCs [57], the regulation of Notch 
signaling is expected to differ between quiescent and pro-
liferating MuSCs in overloaded muscles.

Differences in fusion partners
During muscle regeneration, proliferating myoblasts ini-
tially fuse with each other to form multinucleated cells 
called myotubes (Fig. 1). Subsequently, the nuclear num-
ber of myotubes is increased by the additional fusion of 
myoblasts. Several events are involved in the formation 
of myotubes and myofibers, including cell migration, rec-
ognition, adhesion, and fusion, and fusion-related mole-
cules have been identified [58]. Among them, Myomaker 
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and Myomixer (also known as Myomerger and Minion) 
[59–62] are necessary and sufficient cell fusion molecules 
because the expression of these two factors allows non-
myogenic cells, like fibroblasts, to fuse and form multinu-
cleated cells.

In contrast, MuSCs directly fuse with mature myofib-
ers during muscle hypertrophy (Fig.  2). Thus, although 
the fusion partners are different, Myomaker expressed 
by MuSCs is also essential for fusion with myofibers 
[36]. However, whether the expression of Myomaker and 
Myomixer by myofiber is also necessary for the fusion of 
proliferating MuSCs and myofibers has not been clari-
fied. Notably, a developmental model study reported 
that HeyL suppresses myomaker expression by binding 
to the promoter region of myomaker [63]. Therefore, one 
of the reasons that MuSCs express HeyL in hypertrophic 
muscle may be to avoid untimely fusion and allow their 
proliferation by suppressing myomaker expression. 
Myomaker expression and HeyL suppression are neces-
sary for the fusion of MuSCs with myofibers, indicating 
that the expression of these genes is tightly regulated in 
proliferating MuSCs during muscle hypertrophy.

Differences in myonuclear position
The nuclei of regenerating myofibers are positioned 
in the center of the cytoplasm, which is a signature of 
regenerated muscle (Fig.  1). Of note, Pawlikowski et  al. 
demonstrated that during middle-late stage of muscle 
regeneration, a small portion of MuSC-derived nuclei is 
located in the peripheral position [19]. In mice, the nuclei 
remain centrally located for at least a few months  (per-
sonal observation shared by other colleagues).

In contrast, myonuclei derived from MuSCs observed 
in hypertrophic muscles are located in the periph-
eral position (Fig.  2), as summarized in our previous 
review [28]. Many exciting research topics remain to be 
addressed, such as whether functional differences occur 
between the central and peripheral nuclei and whether 
the structure of the nucleus, including the nuclear 
membrane, or the transcriptional activity/efficiency of 
the nucleus is the same between central and peripheral 
nuclei. Moreover, the difference between MuSC-derived 
and original myonuclei in overloaded muscles must be 
better understood. Recently, Murach et al. used a loaded 
spontaneous exercise model and myonuclei-labeling 
technique to compare the methylation patterns in the 
promoter region of DNA of resident myonuclei (Mn) pre-
sent before exercise and the sum of MuSC-derived myo-
nuclei (SC-Mn) and resident myonuclei (Mn+SC-Mn) 
[64]. The results showed that the Mn+SC-Mn group had 
a lower methylation state in the region encoding ribo-
somes, which are necessary for protein synthesis [64]. 
Although purified SC-Mn must be further investigated 

to obtain conclusive results, the above findings suggest 
that SC-Mn are transcriptionally active compared to the 
original Mn and play a central role in protein synthesis 
in myofibers. Further characterization of SC-Mn will 
provide insights on myonuclear function and plastic-
ity, which will lead to the development of therapeutic 
approaches for muscular atrophy.

Differences in the number and location of inflammatory 
cells
Large numbers of neutrophils and macrophages infil-
trate muscle tissue during regeneration [24, 65]. During 
this process, macrophages pass through the basal lamina 
as macrophages are required to clean the debris of dead 
myofibers (Fig.  1). Thus, macrophages can directly con-
tact MuSCs in regenerating muscle.

Compared to the roles of macrophages in regenerat-
ing muscle, macrophage functions in loaded muscle 
are limited, although recent studies have revealed the 
roles of macrophages in mechanically loaded muscle at 
the molecular level [10]. Peck et  al. reported that mac-
rophages promote extracellular matrix (ECM) remod-
eling by secreting matrix metallopeptidase 14 (Mmp14) 
[13], and their data suggest that leukemia inhibitory fac-
tor (LIF) from myofibers stimulates Mmp14 expression 
in macrophages. Noviello et  al. demonstrated that mac-
rophages are essential for muscle hypertrophy because 
macrophage depletion by clodronate liposomes inhib-
ited myofiber growth [10]. The authors also revealed that 
RhoA signaling in loaded myofibers induces the expres-
sion of the chemokine Ccl3/Cx3cl1, which recruits mac-
rophages into the loaded muscle. Overall, although the 
physiological roles of myofiber-derived factors on mac-
rophages have not been thoroughly examined, the above 
two studies propose that a myofiber–macrophage axis 
occurs in muscle hypertrophy. In our unpublished study, 
macrophage infiltration was observed in overloaded mus-
cle, although the increase in the number of macrophages 
was low compared with that during muscle regeneration. 
In addition, in overloaded muscles, macrophages do not 
need to pass through the basal lamina because myofibers 
are not damaged. Moreover, macrophage infiltration of 
the basal lamina has not been observed in the overloaded 
model except in rare injured areas (Fig. 3). In summary, 
during muscle hypertrophy, direct contact does not occur 
between macrophages and MuSCs unless myofibers die. 
Thus, macrophage-derived factors involved in muscle 
hypertrophy must be identified to further elucidate the 
cellular interplay involved in muscle hypertrophy. Inter-
actome analyses of high-quality single-cell RNA-seq 
data or spatial omics data will fill these gaps and lead to 
more in-depth understanding of the muscle hypertrophy 
process.
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Future perspectives
Muscular dystrophy is a representative muscular dis-
order, and investigations have contributed insights on 
muscle biology, including the sarcolemma structure, 
muscle regeneration, and MuSC [66–68]. Muscular 
atrophy, including sarcopenia, has recently attracted 
research attention based on the need for new therapeu-
tic approaches for these diseases. Compared with mus-
cular dystrophy, muscle atrophy does not cause severe 
muscle damage. Briefly, in patients with muscular atro-
phy, promoting muscle regeneration is not considered a 
viable therapeutic strategy. Considering the character-
istics of muscle atrophy, increasing myofiber size and 
function are the most promising therapeutic strategies. 
The myonuclear number has been reported to reflect 
the myofiber size in both humans and mice [69]. MuSCs 
are critical for increased myonuclei and myofiber 
growth [70, 71]; therefore, MuSC-induced increases or 
improvements in the function of myonuclei in atrophic 
muscle might contribute to therapeutic approaches. To 
implement this strategy, the mechanisms regulating 
MuSC proliferation and differentiation in non-damaged 
muscles must be better understood.

Conclusions
Similarities are observed between the regeneration and 
developmental processes of several tissues, including 
skeletal muscle. Intriguingly, the “growth” observed 
in overloaded muscle resembles developmental myo-
genesis, particularly during postnatal development. 
Some MuSCs that actively proliferate during postna-
tal development express weak or undetectable MyoD 
proteins [72]. Comparable Notch activity likely occurs 
in postnatal and adult MuSCs because drastic changes 
in the expression of Notch target genes have not been 
detected between postnatal and adult MuSCs [73]. In 
addition, during postnatal development, MuSCs pro-
liferate between the basal lamina and myofibers and 
inflammatory cells are not observed. Furthermore, 
myonuclei derived from MuSCs are peripheral during 
postnatal development. Based on this evidence, we con-
clude that the dynamics of MuSCs in overloaded mus-
cle could be considered an intermediate cellular event 
between muscle regeneration and postnatal develop-
mental myogenesis. Further investigations of MuSCs in 
overloaded muscle, which is distinct from regeneration 
and developmental muscle models, will provide new 
insights on MuSC biology and therapeutic approaches 
for muscle atrophy.
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