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Abstract

Background: Skeletal muscle myofibers can be separated into functionally distinct cell types that differ in gene and
protein expression. Current single cell expression data is generally based upon single nucleus RNA, rather than
whole myofiber material. We examined if a whole-cell flow sorting approach could be applied to perform single
cell RNA-seq (scRNA-seq) in a single muscle type.

Methods: We performed deep, whole cell, scRNA-seq on intact and fragmented skeletal myofibers from the mouse
fast-twitch flexor digitorum brevis muscle utilizing a flow-gated method of large cell isolation. We performed deep
sequencing of 763 intact and fragmented myofibers.

Results: Quality control metrics across the different gates indicated only 171 of these cells were optimal, with a
median read count of 239,252 and an average of 12,098 transcripts per cell. scRNA-seq identified three clusters of
myofibers (a slow/fast 2A cluster and two fast 2X clusters). Comparison to a public skeletal nuclear RNA-seq dataset
demonstrated a diversity in transcript abundance by method. RISH validated multiple genes across fast and slow
twitch skeletal muscle types.

Conclusion: This study introduces and validates a method to isolate intact skeletal muscle myofibers to generate
deep expression patterns and expands the known repertoire of fiber-type-specific genes.

Keywords: Single cell RNA-sequencing, Skeletal muscle, Twitch, Fiber

Background
Skeletal muscle is a voluntary, striated muscle found
throughout the body with contraction regulated by nerve
impulses through the neuromuscular junction (NMJ).
Skeletal muscles consist of different fiber types delin-
eated by the isoform of the myosin heavy chain they ex-
press, metabolic function, and other properties [1].
Mouse skeletal muscles are comprised of slow fibers
(type 1) and three types of fast fibers: type 2A, type 2B,
and type 2X [2–4]. These fiber types are variable across

different muscles of the body reflecting different func-
tional needs [2, 4]. Our understanding of all of the genes
that vary across these fiber types is limited, although
many well-characterized examples such as myosin heavy
chains, calcium ATPase pumps, and metabolic proteins
are known. Only recently has there been an effort to
catalog the entirety of fast-/slow-twitch expression dif-
ferences by single cell approaches.
The most comprehensive gene expression study was

performed in mice using DNA microarrays across ten
type 1 and ten type 2B fibers [5]. Single cell RNA-
sequencing (scRNA-seq) also has been performed in
skeletal muscle and muscle cultures. However, until
quite recently, the large size of skeletal myofibers has
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precluded them from these datasets, which are instead
predominately satellite cells and other supporting cell
types [6–13]. A recent publication used SMART-Seq to
evaluate three fast fiber mouse fibers [14], and several sin-
gle nucleus RNA-seq (nuc-seq) projects have also added
to the literature [15–17]. The totality of these studies
strongly suggests there are numerous expression differ-
ences between skeletal muscle fiber types and demon-
strates a need for new approaches to capture this diversity.
The Kwon lab recently established a protocol for

scRNA-seq of large mature cardiac myocytes through
large particle fluorescence-activated cell sorting (FACS)
[18]. We ascertained if this method could be used to iso-
late the even larger skeletal muscle myofibers for
scRNA-seq, as typically only small cells are captured in
traditional scRNA-seq methods [6, 8]. We utilized the
flexor digitorum brevis (FDB), a well-characterized fast-
twitch fiber muscle of the base of the foot, made up pre-
dominately of type 2A (IIa) and type 2X (IIx) fibers [19].
Our goal was to validate this whole cell capture method,
compare whole cell single cell data to single nuclear
data, and characterize this important model muscle.

Methods
Isolation and sequencing of adult skeletal myofibers
All animal studies were approved by the Institutional
Animal Care and Use Committee at Johns Hopkins and
all methods were performed in accordance with the rele-
vant guidelines and regulations. This study used adult
male mice (>3 months) from the C57BL/6J and DBA2
backgrounds (Jackson Labs, Bar Harbor, ME). All mice
were first anesthetized in an induction chamber using
isoflurane until breathing rate has slowed to 1 Hz and
were unresponsive to rear toe pinches. This was
followed by cervical dislocation prior to excision of any
muscles. To isolate skeletal myofibers, we performed
collagenase-based digestion of the flexor digitorum bre-
vis (FDB), a short muscle of the hind feet, as per previ-
ously established protocols [20]. We performed intact
and fragmented FDB studies. The FDB was transferred
to a dish containing DMEM with 1% penicillin/strepto-
mycin, 1% fetal bovine serum, and 2mg/mL Collagenase
Type II (Worthington). Muscle was digested for 1.5 h in
a 37°C cell incubator with 5% CO2. Subsequently, the
muscle was transferred to a dish containing media with-
out collagenase and gently triturated to release single
myofibers. Large undigested chunks and tendons were
removed with tweezers prior to single cell isolation. A
COPAS SELECT Flow Pilot Platform (Union Biome-
trica) was employed, as described below.
These sorted cells were placed individually into 96-

well plates. Capture plate wells contained 5 μl of capture
solution (1:500 Phusion High-Fidelity Reaction Buffer,
New England Biolabs; 1:250 RnaseOUT Ribonuclease

Inhibitor, Invitrogen). Single cell libraries were then pre-
pared using the previously described mcSCRB-seq proto-
col [21, 22]. Briefly, cells were subjected to proteinase K
treatment followed by RNA desiccation to reduce the re-
action volume. RNA was subsequently reverse tran-
scribed using a custom template-switching primer as
well as a barcoded adapter primer. The customized
mcSCRB-seq barcode primers contain a unique 6 base
pair cell-specific barcode as well as a 10-base pair unique
molecular identifier (UMI). Transcribed products were
pooled and concentrated, with unincorporated barcode
primers subsequently digested using Exonuclease I treat-
ment. cDNA was PCR-amplified using Terra PCR Direct
Polymerase (Takara Bio). Final libraries were prepared
using 1ng of cDNA per library with the Nextera XT kit
(Illumina) using a custom P5 primer as previously
described.

scRNA-seq sequencing and analysis
Pooled libraries were sequenced on two high-output lanes
of the Illumina NextSeq500 with a 16-base pair barcode
read, 8-base pair i7 index read, and a 66-base pair cDNA
read design. To analyze sequencing data, reads were
mapped and counted using zUMIs 2.2.3 with default set-
tings and barcodes provided as a list [23]. zUMIs utilizes
STAR (2.5.4b) [24] to map reads to an input reference
genome and featureCounts through Rsubread (1.28.1) to
tabulate counts and UMI tables [24, 25]. Reads were
mapped to the mm10 version of the mouse genome. We
used GRCm38 from Ensembl concatenated with ERCC
spike-in references for the reference genome and gene an-
notations. Dimensionality reduction and cluster analysis
were performed with Seurat (2.3.4) [26].

Seurat-based analysis
Analysis was performed using the Seurat R toolkit
V3.1.1 for this dataset [26]. Initial filtering removed
lower quality cells (read count <5000 RNAs detected or
>20% mitochondrial genes) before sctransform
normalization [27]. We performed principal components
analysis (PCA) of the top 3000 variable genes based on
the Seurat sctransform algorithm and used the top 4 for
downstream analysis. We generated a Seurat workflow
that identifies a subset of genes with high cell-to-cell
variation within the scRNA-seq data. A Uniform Mani-
fold Approximation and Projection (UMAP) was gener-
ated alongside a heat map representing the top genes in
clusters as determined by each gene set used for PCA.

Analysis of a public nuclear RNA-Seq dataset
The snRNA analysis was done in Seurat V3.1.1 taking
data available from Dos Santos et al. [28] https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150065.
Their data consisted of four sets of matrices, one of
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which was a mix of tibialis, extensor digitorum longus,
gastrocnemius, and plantaris, which we refer to as
“mixed muscle” [28]. The other three sets were separate
quadriceps, tibialis, and soleus. We retained nuclei from
all muscle samples in mixed muscle that contained 200–
2500 unique RNAs and had less than 5% mitochondrial
genes. Log normalization was performed before finding
the top 2000 variable features and scaling through Seur-
at’s built in functions. These variable features were used
to build principal components and the top 10 were used
for clustering and UMAP visualization. We then subse-
lected myocyte nuclei using Ttn as a positive marker
and Abca8a and Plxdc2 as negative markers of fibroadi-
pogenic progenitors. We painted the UMAP of the
remaining nuclei using Myh1, Myh2, Myh4, and Myh7
to identify muscle fiber types. Seurat’s Findallmarkers
used a Wilcoxon rank-sum test to identify differentially
expressed genes between clusters expressed in at least
50% of each cluster being examined. We then used these
genes and myosin heavy chains to assign identities to
slow, fast2A, fast 2B, and fast 2X clusters.
Finally, we ran differential gene expression analysis

using a T-test between the Fast 2X and a combined
Slow/Fast2A group, to match the analysis of the prior
scRNA-seq data. A logFC threshold of 0.35 filtered out
highly abundant genes.

RISH
Wild-type C57Bl6 mouse skeletal muscles (extensor digi-
torum longus, gastrocnemius, soleus, diaphragm) and
brain were obtained at necropsy under an approved
ACUC protocol. Tissues were immediately fixed in for-
malin and paraffin-embedded blocks were created, from
which 5-μm slides were made. Catalog probes for RNA
in situ hybridization (RISH) were obtained from RNA-
scope (ACDBio). These probes were designed to detect
the following genes: Myh2 (pre-mRNA, #539031-C2),
Got2 (#459111), Fhl1 (#536521), Ntrk3 (423621-C2), and
Gabbr2 (#317971). Each probe set targeted all validated
NCBI refseq transcript variants of the gene. One custom
probe, Eno3, was designed to target all transcript vari-
ants of Eno3 (GeneBank accession nm_007933.3).
The Multiplex Fluorescent Reagent Kit v2 (ACDBio)

was used following the manufacturer’s instructions.
Briefly, FFPE tissue slides were baked for 1 h at 60°C.
The slides were subsequently deparaffinized with xylene,
rinsed with 100% ethanol and air-dried. After application
of hydrogen peroxide and washing, slides were treated
with the target retrieval reagent in a steamer (>99°C) for
20 min. Then, the tissue was permeabilized using a pro-
tease. Hybridization of the probes to the targeted
mRNAs was performed by incubation in a 40°C oven for
2 h. After washes, the slides were processed for the
standard signal amplification and application of

fluorescent dye (Opal dyes 520 and 570, AKOYA Biosci-
ences) steps. Finally, the slides were counterstained with
DAPI, mounted with Prolong Gold Antifade Mounting
solution (Invitrogen), and stored in a 4°C room. The
fluorescent images were obtained in the Johns Hopkins
Microscope Core Facility using a Zeiss LSM700 Laser
scanning confocal microscope. Images were manually
counted for co-expression, counter-expression, and non-
expression across muscle fibers in ImageJ [29], and a χ2

analysis, with Yates correction, was determined in Rstu-
dio (v1.3.1093) and R (v4.0.3).

Human Protein Atlas
The HPA is a comprehensive repository of IHC-stained
tissue microarrays for numerous tissues, including skel-
etal muscle [30, 31]. We cross-referenced our gene list
with the HPA to find examples of concordance and dis-
crepancy to our gene list for variable expression.

Gene Ontology (GO) validation
GO was performed on the 557 most variable genes be-
tween two fast 2X clusters (2Xc1 and 2Xc2) using the
Gene Ontology resource (http://geneontology.org/) and
selecting for the cellular component. Gene lists for terms
“actin cytoskeleton,” “mitochondria,” “cell-cycle,” and
“transcription regulator activity” were obtained from GO
and used to determine the average expression of genes
in each category from the single cell RNA-seq and nuc-
seq datasets. The log2 normalized expression values of
the datasets were normalized to each other.

Data availability
Mouse skeletal muscle sequencing was deposited at the
Sequence Read Archive (SRA – SRP241908) and the
Gene Expression Omnibus (GSE143636).

Code availability
All analysis scripts are available at GitHub (https://
github.com/mhalushka/Skeletal_muscle_mosaicism).

Results
Validation of a large cell scRNA-seq method
We utilized a large particle FACS (LP-FACS) method test-
ing two different approaches to isolated and dissociated
FDB myofibers. In the first approach, we dissected the
FDB from tendon to tendon prior to digestion, enabling
isolation of fully intact myofibers. In the second approach,
we cut small portions of the FDB muscle using scissors.
We reasoned that the latter approach would broadly
mimic skeletal muscle needle biopsies as might be done,
for example, from a human patient sample. We isolated
single myofibers through LP-FACS, using a flow channel
size of 500 μm. The COPAS SELECT Flow Pilot Platform
was employed. Using time-of-flight (TOF, measuring axial
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length) and optical extinction (EXT, measuring optical
density) parameters, we found that skeletal myofibers sep-
arated into three populations—an EXT-low population,
EXT-high/TOF-low population, and EXT-high/TOF-high
population (Fig. 1a). The EXT-high/TOF-high population
was comprised almost entirely of intact myofibers with
lengths > 400 μm, suggesting successful sorting of large
myofibers (Fig. 1b). Interestingly, the EXT-high/TOF-low
population was composed of what appeared to be rod-
shaped fragments that maintained sarcomeric proteins, al-
beit disrupted (Fig. 1c). The EXT-low population was
comprised mostly of debris and dead cells, as previously
observed with cardiac myocytes (Fig. 1d). The EXT-high/
TOF-low population qualitatively resembled our pseudo-
biopsy isolated myofiber fragments (Fig. 1e), which also
shared similar TOF and EXT parameters (not shown). To
our knowledge, this is the first FACS-based single cell
RNA-seq study of skeletal myofibers; thus, we adopted a
broad gating strategy for isolation of single cells. We
sorted 700 EXT-high myofibers (comprised of both TOF-
high and TOF-low populations) as well as 100 myofiber
fragments isolated through the pseudo-biopsy method.

The two gates and pseudo-biopsy approach were used
to isolate 763 cells for single cell RNA-seq using the
established mcSCRB-seq protocol [21, 22]. The entire
group of 763 cells/cell fragments were sequenced to a
median depth of 108,110 reads per cell. Preliminary ana-
lyses, however, indicated a distinct cluster of cells with a
high percentage of mitochondrial reads (Fig. 1f) or
otherwise low abundance reads (median 12,187 per cell).
Notably, almost all of our pseudo-biopsy myofiber frag-
ments and many TOF-low cells fell into this category.
These quality control metrics likely indicated poor qual-
ity or sheared cells with loss of RNA. Thus, we excluded
these cells, identified the EXT-high and TOF-high gate
as the appropriate gate to obtain high quality myofibers,
and narrowed our analysis to the best 171 cells (>5000
genes expressed and <20% mitochondrial genes)
remaining with a median read count of 239,572 per cell.

Analysis of the expression patterns of single FDB
myofibers
A median of 12,187 transcripts were identified in these
myofibers and all had the expression patterns of mature

Fig. 1 FDB muscle myocyte preparation. a Flow cytometry showing three gated areas representing EXT-high/TOF-high, EXT-high/TOF-low and
EXT-low populations of FDB myofibers. b Representative images of Gate 1 EXT-high/TOF-high. c Representative images of Gate 2 EXT-high/TOF-
low. d Representative images of Gate 3 EXT-low. e Representative image of pseudo-biopsy isolated myocyte fragments. Gates 1 and 2 were used
for library preparation. White size bar is 400 μm. f Percent of mitochondria in unused and used cells
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skeletal myofibers, highly expressing a myosin heavy
chain isoform.
We used the top 4 significant PCs to cluster these cell

types (Fig. 2a). Three groups were observed in a UMAP
dimensionality reduction plot. Two clusters, containing
69 and 53 cells respectively (71% of all cells) had ele-
vated expression of Myh1 and Myh8 identifying these
groups as fast 2X type cells. MYH8, while considered a
neonatal myosin, maintains low expression in adult skel-
etal muscle [32, 33]. A third cluster containing 49 cells
was defined by high expression of Tnnt1 and Myh2. A
deeper analysis of this group showed that 12 cells had
high to modestly elevated Myh7 expression (a slow-
twitch marker), indicating this cluster was a combination
of slow-fibers cells and fast 2A fibers (Fig. 2b, c). Of
note, Myh4, a myosin heavy chain associated with fiber
type 2B, was the dominant myosin in only a single cell
that was assigned to this group (Fig. 2b, c) [2]. As the
FDB is a fast-fiber muscle, the overall distribution of sig-
nificantly more fast (159) to slow fibers (12) is consistent
with expected.
Interestingly, the expression patterns of the main fast-/

slow-fiber differentiating Myh genes was not as dichot-
omous as noted in protein based fiber type data [34].
Here there were many more cells with intermediate

levels and coexpression of Myh1 and Myh2 suggesting
higher gene plasticity and more cell hybrids (Fig. 2b) [2].

Shared and variable transcripts by cell type
We wondered about the extent to which highly abun-
dant genes were mosaic across these cell fiber states.
By normalized read counts of the scRNA-seq data, we
determined the 50 most abundant transcripts by the
average of each cell type in the two fast 2X clusters
and the one fast 2A / slow cluster determined by
Seurat (Suppl. Table 1). The overall most abundant
transcripts were Ttn, Acta1, and mt-Rnr2. There was
significant overlap of abundant genes, with only 9
genes being different across the three samples. We
then explored differences specifically between the two
most abundant fiber types, fast 2A and fast 2X. Of
2649 evaluated genes (all expressed in ≥95% of cells
of one cluster), 160 genes were differentially
expressed across the two groups (t-test, adj. p value <
0.01). This included expected genes such as Tnni1,
Tnnt1, and Myh1 and less investigated genes such as
Ubash3b and Togaram2 (Fig. 2d, Suppl. Table 2).
We validated a subset of these genes (Eno3, Fhl1,

Got2, Myh2) using RISH and available probes across the
extensor digitorum longus (EDL), gastrocnemius, and

Fig. 2 Subtyping of skeletal myofibers. a UMAP graph of 171 skeletal muscle cells based on variable gene expression, indicating 3 clusters. b
Major myosin heavy chain distributions across the 171 cells as a percentage of each heavy chain. c Assignment of each cell to a fiber type. d
Heat map of major gene expression differences between fast 2A and fast 2X cells
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soleus. Eno3 is a known fast fiber gene (both 2A and 2X)
and was identified in most cells of the fast-twitch EDL and
gastrocnemius (Fig. 3a, b). Fhl1 was identified as being ele-
vated in fast 2A myofibers (Fig. 2d, Suppl. Table 2). In
Fhl1-positive myofibers, Eno3 qualitative expression was
reduced, but not absent. In the slow-twitch soleus (Fig.
3c), levels of both genes were decreased. Of 693 myofibers
reviewed across all of the tissues, most (341, 49%) showed
co-expression, with 186 cells being Eno3+ only, 92 being
Fhl1+ only and 74 having no expression. A χ2 analysis
demonstrated only a modest enrichment for co-
expression (χ2=4.25, p = 0.039). Fhl1 was then compared
to Myh2, a known fast 2A gene (Fig. 3d–f). The strong
pre-mRNA Myh2 staining was interpreted as nuclear [15,
16]. The expression of the two genes demonstrated appro-
priate overlap in the same cells (206 co-expressed, 195
non-expressed, and 30 counter-expressed, χ2 = 320.9, p =
9.3e-72). Got2, also identified as elevated in fast 2A fibers,
showed appropriate co-expression with Myh2 across all
three tissues (Fig. 3g–i) and by myofiber (81 co-expressed,
69 non-expressed, 22 counter-expressed, χ2 = 98.1, p =
4.0e−23). These patterns of fast fiber expression are con-
sistent with those identified by scRNA-seq (Fig. 2d).

Comparison of full cell scRNA-Seq to nuclear RNA-Seq
A recent publication by Dos Santos et al. [16] described
nuc-seq of mouse skeletal muscles from a mixed sample

of tibialis, gastrocnemius, soleus, plantaris, and extensor
digitorum longus (N=6 each), along with nuclei from
each of quadriceps, tibialis, and soleus, identifying myo-
nuclei based on Ttn expression. Whereas we focused on
sequencing depth (239,572 median reads/171 cells), Dos
Santos et al. went wide, obtaining many more skeletal
myofiber nuclei (6962), but only to a median read count
of 2785 and 1210 transcripts per nucleus in their mixed
muscle sample. We processed this dataset using Seurat
and determined, as they reported, the presence of slow,
fast 2A, fast2A/2X, fast 2B, and fast 2X nuclei clustering
more distinctly by myosin heavy chain status on a
UMAP visualization of the data, than our whole scRNA-
seq data (Suppl. Fig. 1).
As the whole cell versus nuclear isolation methods

were so distinct, we evaluated how those differences
affect the presence of abundant genes. Notably, in a
comparison of the most highly expressed genes, only 27
were present in the top 100 for both methods. A GO
search of the 73 genes that were only abundant in the
whole cell scRNA-seq showed these genes were enriched
for terms such as “myofibril” and “ATP metabolic
process.” This had us wonder if we could observe differ-
ences in gene classes based on the nuc-seq vs scRNA-
seq methods similar to that described in other cell types
[35]. We used normalized expression data between the
studies and determined the expression differences

Fig. 3 RISH staining of variably expressed genes across extensor digitorum longus (EDL), gastrocnemius (GC), and soleus (SOL). a–c Fhl1 (green)
and Eno3 (red) show differing expression patterns across EDL (a), GC (b), and SOL (c). There is reduced Fhl1 in the fast-twitch GC and increased
Fhl1 in the slow-twitch SOL fiber. d–f Fhl1 (green) is coexpressed with Myh2 (red), which has a perinuclear pattern. Both Fhl1 and Myh2 are
reduced in GC (e) and increased in SOL (f). g–i Got2 (green) is coexpressed with Myh2 (red) showing highest expression in the EDL (g). j
Neuronal tissue showing strong staining of Gabbr2 and Ntrk3. k Gabbr2 shows a variable blush across the GC, while no discernable Ntrk3 was
observed in the GC. Nuclei were stained with DAPI (blue) in all images

Verma et al. Skeletal Muscle           (2021) 11:13 Page 6 of 10



between whole cell and nuclear data for the genes repre-
senting the GO terms of transcription factors, cell cycle
genes, mitochondria, and actin-cytoskeleton. Both tran-
scription factors and cell cycle genes were more abun-
dant in the nuc-seq data (3.9 and 1.9 fold respectively),
while actin-cytoskeleton genes were more abundant in
scRNA-seq data (1.9 fold). Mitochondrial genes were
equivalent for expression across the two methods. How-
ever, two of the most abundant scRNA-seq genes over-
all, the mitochondrial genes mt-Rnr1 and mt-Rnr2, were
not present in the nuc-seq data, impacting these results.
Also of note, Malat1, a known nuclear lncRNA, was the
most abundant transcript in the nuc-seq data, consistent
with a prior report [35].
We compared a combined slow/fast 2A group against

a fast 2X group to again discern differences in myofiber-
specific genes by sequencing method. There were 771
differentially expressed genes (t-test, adj. p value <0.01)
in comparison to 152 in the whole cell dataset. Only 80
differentially expressed genes overlapped between the
two datasets and of these, three were significant in op-
posite fold directions (Crim1, Myh4, Kcnc1) (Suppl.
Table 3). Altogether, these data indicate the ability to
discern cell myofiber types, by either nuc-seq or scRNA-
seq, despite differences in the specific genes that dis-
criminate across the slow/fast 2A and fast 2X cells and
the relative expression levels of genes, by the two
methods of RNA-seq.

Is there a meaningful difference between fast 2X
subclusters?
The initial Seurat analysis subsetted the fast 2X cluster
into two groups. We explored if these two fast 2X clus-
ters (cluster 1 - 2Xc1; cluster 2 – 2Xc2) represent unique
cell types, cell states, or some technical division. Of 5260
genes compared, 557 genes were differentially expressed
(t test; adj. p value <0.01). A GO analysis on the 557
genes identified an enrichment of the cellular compo-
nent “neuronal synapse,” suggesting variability at the
NMJ. A further review of the top significant genes
showed that >20 genes appear to have neuronal origins
(Cdh4, Cdkl5, Cntn4, Dscam, Gabbr2, Kirrel3, Lingo2,
Lrp1, L1cam, Nrcam, Ntn1, Ntrk3, Ptprt, Ptpro, Robo2,
Sdk1, Sema5a, Sema6d, Shank2, Sox5, Tnr, and Wwox).
We attempted to exclude technical reasons for this vari-
ability before investigating a biological rationale for the
division.
First, we noted that the vast majority of the neuronal

genes (20/22) were present in at least 120 of the 171
cells (Suppl Fig. 2).We surmised that some degree of
ambient RNA was present [36]. We then performed
RISH for two of these genes, Gabbr2 and Ntrk3, showing
robust neuronal staining (Fig. 3j) and some Gabbr2, but
no Ntrk3 in myofibers (Fig. 3k). We further noted

Pecam1 and Smtn, as markers of endothelial cells and
smooth muscle cells respectively, showed comparable in-
creases in these genes among the fast 2Xc2 cells. These
data indicated that despite extremely low expression, am-
bient genes, in general, have slightly elevated values in fast
2Xc2 cells, perhaps consistent with more genes being de-
tected in these cells. We further note that three of the
most abundant genes, Ttn, mt-Rnr1, and mt-Rnr2 are con-
versely lower in fast 2Xc2 cells (Suppl Fig. 2). We take the
summation of this data to indicate that the separation of
fast 2Xc1 and 2Xc2 is a technical artifact related to the se-
quencing and not a true biological distinction.

Discussion
Our study represents the first use of LP-FACS to isolate
single myofibers for scRNA-seq. This study was designed
to prove feasibility of the method and did not attempt to
discern fiber type expression across a range of muscle
bundles or types, which will be the basis of future stud-
ies. Skeletal myofibers are often long, stretching across
the length of a muscle; thus, isolation techniques (par-
ticularly from human samples) may rely on the use of bi-
opsies or otherwise fragmented myofibers. To test the
effect of myofiber fragmentation on scRNA-seq data
quality, we used a liberal gating strategy of our dissoci-
ated myofibers (including both EXT-high/TOF-low and
EXT-high/TOF-high populations) as well as directly se-
quencing fragmented myofibers generated through a
pseudo-biopsy approach. Disappointingly, we found that
a large portion of our sequenced myofibers were of poor
quality, including those from our pseudo-biopsy ap-
proach. By contrast, the highest quality data came from
fully intact myofibers, in particular the EXT-high/TOF-
high population. Because this population is almost com-
pletely enriched for intact myofibers, we believe that fu-
ture experiments using LP-FACS to isolate skeletal
myofibers should focus solely on the EXT-high/TOF-
high population. We are confident that this will allow
for a much higher percentage of good quality scRNA-
seq libraries, akin to what we have observed previously
with LP-FACS isolation of cardiac myocytes [18]. These
results also mean that more work must be done to iden-
tify better isolation methods for human skeletal muscle.
Current methods of human skeletal muscle biopsying
from the quadriceps only obtain muscle fragments. Al-
though different collection reagents for these biopsies
(high potassium and EGTA), which are used to prevent
contractions, are used, it remains to be determined if
preventing contractions is sufficient to reduce RNA loss
as cellular integrity is always lost [37]. If not, more cre-
ative means to obtain full length fibers or non-damaged
fibers must be considered, including rapid autopsy pro-
tocols or larger surgical resections that include skeletal
muscles. Otherwise, human muscle data will have to be
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obtained from nuclei material, which we noted had dif-
ferent, albeit complimentary, expression characteristics.
The recent availability of public nuc-seq skeletal myo-

fiber data allowed us to compare these two techniques.
As has been reported, we found significant differences in
the gene composition of these cells that was dependent
on the sequencing approach [38, 39]. Myh gene expres-
sion was more distinct in the nuc-seq data. This could
be related to technical differences such as a sparser data
matrix of nuc-seq with more binary patterns. More
interestingly, it could be a biological finding if dynamic
transcriptional activity is more distinct in nuc-seq data.
The nuc-seq was enriched for transcription factors and
cell cycle RNAs, while the whole cell scRNA-seq was
biased towards other RNA types including significant ex-
pression of the mitochondrial RNAs mt-Rnr1 and mt-
Rnr2 even after controlling for the percent of mitochon-
drial RNA. Also, the genes that were variable between
the slow/fast 2A and fast 2X populations, across the
methods, were frequently inconsistent. Nonetheless,
both methods successfully separated myofibers by fast/
slow type. It will take additional orthogonal approaches
such as proteomics to definitively solve this question of
which genes/proteins have variable expression between
myofiber types and at what expression levels.
Characterization of the FDB identified essentially two

clusters, a fast 2X cluster and a fast 2A/slow fiber clus-
ter. If more slow fibers were sequenced, that second
group would have likely separated further. We were able
to use RISH to validate some of the genes that had ex-
pression differences between the fast 2X and 2A cells.
Although our analysis using Seurat subdivided the fast
2X cluster, we believe the simplest explanation of this
splitting is a technical cause related to slight differences
in very low levels of ambient RNA. A more interesting
explanation is variable neuronal transfer of mRNAs
across the NMJ into the skeletal muscles via extracellu-
lar vesicles [40, 41]. This would imply a real state-
difference in these cells, but again is considered unlikely.
We feel this exercise in considering technical causes of
Seurat-derived cell types is a useful reminder to groups
working in the field of defining novel cell types to con-
sider more mundane reasons for some divisions.
In conclusion, we introduce a method of whole skel-

etal muscle cell isolation for scRNA-seq experimenta-
tion. This FDB data is some of the first whole, single cell
skeletal myofiber data mainly identifying expression pat-
terns in fast 2A and fast 2X myofibers. Future studies
can investigate a variety of muscle beds incorporating
more slow or fast 2B cells by this approach.
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