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Abstract

Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system
(CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the
CNS computes the position and movement of our extremities in space, which is a requirement for motor control,
for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function
contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients.
Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when
designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function
of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of
muscular dystrophies.
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In its original sense, the term proprioception refers to
sensory information arising in our own musculoskeletal
system itself [1–4]. Proprioceptive information informs
us about the contractile state and movement of muscles,
about muscle force, heaviness, stiffness, viscosity and ef-
fort and, thus, is required for any coordinated move-
ment, normal gait and for the maintenance of a stable
posture. Proprioception combines with other sensory
systems to locate external objects relative to the body
and by this contributes to our body image and equili-
brioception. Since proprioception is vital for motor and
body control, patients with a loss of proprioception ei-
ther due to an autoimmune disease [5] or due to a loss-
of-function mutation in a protein essential for proprio-
ception [6] have prominent sensory and motor deficits,
generally leading to ataxia and dysmetria. Patients with a
congenital absence of proprioception show delayed

development of head control and walking, an early im-
pairment of fine motor skills, sensory ataxia with un-
steady gait, increased stride-to-stride variability in force
and step length, an inability to maintain balance with
eyes closed (Romberg’s sign), a severely reduced ability
to identify the direction of joint movements, and an ab-
sence of tendon reflexes [6–12]. The motor problems
are so severe that without the compensatory activity of
other senses, including the vestibular and the visual sys-
tems, the patients are unable to maintain their posture,
walk or perform coordinated voluntary movements. In
addition, recent studies have uncovered exciting new
functions for proprioception [4, 13]. For example, pro-
prioceptive information is required for the realignment
and proper healing of fractured bones [14] as well as for
the maintenance of spine alignment [15]. Thus, patients
with proprioceptive deficits are likely to develop adoles-
cent idiopathic scoliosis in their second decade of life,
suggesting that the proprioceptive information may not
only provide dynamic control of spine alignment but
also prevent progressive spinal deformation [13, 15].
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Moreover, after spinal cord injury, proprioceptive feed-
back is essential for locomotor recovery and facilitates
circuit reorganization [16]. Ablation of this feedback
after behavioral recovery permanently reverts functional
improvements, demonstrating the essential role of pro-
prioception also for maintaining regained locomotor
function [17]. Thus, proprioceptive information has
functions that extend far beyond motor control and in-
cludes non-conscious regulation of skeletal development
and function as well as recovery after spinal cord injury
[4, 18].

Structure and function of muscle spindles
Although Golgi tendon organs, joint receptors and other
sensory systems also contribute to proprioception,
muscle spindles are the most important proprioceptors
[19, 20]. Muscle spindles are the most frequently found
sense organs in skeletal muscles and present in almost
every muscle. The density of muscle spindles within the
large muscle mass, however, is low so that they are ra-
ther difficult to detect. Rough estimates have suggested
approximately 50,000 muscle spindles in the entire hu-
man body [21]. Interestingly, in humans, muscle spindles
are mostly absent in facial muscles [22] and extraocular
muscles have unusual muscle spindles and additional

unique sensory structures named palisade endings,
which might also provide proprioceptive information
[23–25].
Muscle spindles are encapsulated sensory receptors

which inform the brain about changes in the length of
muscles [3, 20]. They consist of specialized muscle fibers
(so called intrafusal fibers) that are multiply innervated
and named according to the arrangement of their nuclei
as nuclear bag or nuclear chain fibers (a schematic rep-
resentation of a muscle spindle is shown in Fig. 1a).
Intrafusal muscle fibers are up to 8-mm long in humans
and about 400-μm long in mice and oriented parallel to
the surrounding (extrafusal) muscle fibers. Each muscle
spindle contains on average 3–5 (mouse) [28] or 8–20
(human) [29] intrafusal fibers. With a diameter of 8 to
25 μm [30], intrafusal muscle fibers are much thinner
than extrafusal muscle fibers. Contractile filaments are
found in intrafusal fibers predominantly in the polar re-
gions with only a small ring of sarcomeres underneath
the sarcoplasmic membrane in the central (equatorial)
region (Fig. 1a). However, muscle spindles do not con-
tribute significantly to the force generated by the muscle
[31, 32]. Nuclear bag fibers often extend beyond the
fluid-filled fusiform capsule and are attached to intra-
muscular connective tissue [33]. Nuclear chain fibers are

Fig. 1 Structure of muscle spindles and distribution of the DGC. Panel a shows a schematic representation of the sensory and fusimotor
innervation of intrafusal fibers. The connective tissue capsule is indicated in orange. Muscle spindles contain three types of intrafusal fibers:
nuclear bag1, nuclear bag2, and nuclear chain fibers. Different parts of intrafusal fibers are innervated by different neurons: The central
(equatorial) part is in intimate contact with afferent proprioceptive sensory neurons, termed primary “group Ia afferents” (forming the annulospiral
endings) and (if present) secondary or “group II afferents”, marked in green and red, respectively. In addition to the sensory neurons, intrafusal
muscle fibers are innervated by efferent γ-motoneurons (marked in black) in both polar regions, were they form a cholinergic synapse. The polar
regions of intrafusal fibers contain most of the contractile elements (sarcomeres are indicated in blue in panel a). This schematic representation is
based on the well-characterized muscle spindles from the cat’s tenuissimus muscle [19]. However, interspecies differences exist. For example,
mouse muscle spindles might not have a group II innervation [26], and in humans, the sensory nerve terminal does not form annulospiral
endings and the secondary ending innervates nuclear bag as well as nuclear chain muscle fibers [27]. Panel b shows a confocal section of the
central part of a mouse muscle spindle stained with anti-neurofilament antibodies. Note the annulospiral endings of the Ia afferents in the central
region. The γ-motoneuron endplates are located outside the picture
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attached to the polar regions of the thicker and longer
nuclear bag fibers [33].
Functionally, muscle spindles are stretch detectors, i.e.

they sense how much and how fast a muscle is length-
ened or shortened [19]. Accordingly, when a muscle is
stretched, this change in length is transmitted to the
spindles and their intrafusal fibers which are subse-
quently similarly stretched. To respond appropriately to
changes in muscle fiber length, intrafusal fibers are in-
nervated by two kinds of neurons: afferent sensory neu-
rons and efferent motoneurons (Fig. 1a). In humans, the
sensory innervation of the muscle spindle arises from
both group Ia and group II afferent fibers (also some-
times called type Ia or type II fibers, respectively), which
differ in their axonal conduction velocity [34]. In con-
trast, in mice an innervation by group II fibers has so far
not been detected by histological or functional assays
[26, 35]. However, transcriptome analysis of DRG pro-
prioceptive neurons has recently suggested the existence
of group II fibers also in mice [36]. There is usually only
a single Ia afferent fiber per spindle, and every intrafusal
muscle fiber within that spindle receives innervation
from that sensory neuron. In cat, rat and mice (and
probably many other species), the axon terminals of this
sensory afferent fiber coil around the central (equatorial)
part of both nuclear bag and nuclear chain fibers, form-
ing the primary endings (also called annulospiral end-
ings) [37, 38] (Fig. 1b). In humans, sensory terminals
form irregular coils with branches and varicose swellings

[39]. When present, the smaller group II fiber terminals
flank the primary annulospiral endings in the equatorial
region (Fig. 1a). There may be several group II fibers in-
nervating each human spindle [40]. The cell bodies of
these proprioceptive afferent fibers constitute 5–10% of
all neurons in the dorsal root ganglion [36]. They can be
classified and distinguished from other dorsal root gan-
glion neurons as a unique neuronal population using
single cell transcriptome analysis [36, 41, 42].
Afferent sensory neurons generate action potentials

with frequencies that correspond to the size of the
stretch and to the rate of stretching [43] (Fig. 2). Sensory
neurons innervating bag1 fibers respond maximally to
the velocity of changes in muscle fiber length (dynamic
sensitivity) and those innervating bag2 fibers as well as
nuclear chain fibers respond maximally to the amount of
stretch (static sensitivity). For a recent review on the
mechanotransduction processes within the sensory nerve
terminal, see [45].
Sensory neuron activity from muscle spindles can be

electrophysiologically recorded and characterized in a
number of different ways. In humans, for example, indi-
vidual sensory afferent (“single unit”) action potentials
can be studied in vivo by intraneural microelectrodes
inserted into accessible peripheral nerves (microneuro-
graphy), such as the median and ulnar nerves at the
wrist or upper arm, the radial nerve in the upper arm,
and the tibial and common peroneal nerves in the lower
limb [29]. In mice, single unit muscle spindle afferent

Fig. 2 Typical responses of a muscle spindle to stretch. The responses of an individual muscle spindle from the mouse extensor digitorum longus
muscle to ramp and hold stretches applied to the tendon were recorded with an extracellular electrode. Single unit action potentials are shown
in (a and d). The stretch was 4-s long, and the length change corresponded to 260 (panel b) and 780 (panel e) μm. The ramp speed in (e) was 3-
fold higher compared to that in (b). Panels c and f represent the instantaneous frequencies (action potentials/s). In panel f, three different
parameters that are usually analyzed to describe muscle spindle function are illustrated: resting discharge (RD), dynamic peak (DP), and static
response (SR). For more information on these parameters, see [32, 33, 44]. Note that the dynamic peak and the static response is higher in (f),
compared in (c) due to the higher ramp speed and the longer length change. Since the fusimotor innervation was cut during the dissection of
the muscle, no action potentials can be observed directly after the end of the ramp and hold stretch (spindle pause)
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responses to ramp-and-hold stretches and sinusoidal vi-
bratory stimuli have been well characterized in an
ex vivo adult mouse extensor digitorum longus prepar-
ation dissected with the innervating nerve attached [26,
46]. A typical example for a single unit muscle spindle
response to two different ramp-and-hold stretches in the
adult mouse extensor digitorum longus muscle is shown
in Fig. 2. In many species, muscle spindles exhibit a rest-
ing discharge that is related to the degree of muscle
stretch but the frequency of the mean firing rate differs
between species. In mice at room temperature, the fre-
quency is ~ 15 Hz (Fig. 2). Muscle spindle afferents en-
code muscle length in their frequency of firing, i.e. the
more the muscle is stretched, the higher the frequency
(static response). In addition to the static encoding of
length changes, spindle afferents, especially primary af-
ferents, can respond to dynamic length changes, i.e. the
faster the stretch, the higher the frequency during the
ramp phase. Accordingly, the instantaneous frequency
(action potentials/s) shown in Fig. 2 is higher the faster
the stretch is and the longer the length change is.
In addition to sensory neurons, intrafusal muscle fibers

are also innervated by efferent motoneurons (fusimotor
innervation; Fig. 1a) [47]. Both β- and γ-motoneurons
innervate intrafusal fibers, but γ-motoneurons are con-
siderably more abundant and much better characterized
compared to β-motoneurons [48]. Gamma-motoneurons
constitute about 30% of all motoneurons in the ventral
horn of the spinal cord. Axons of motoneurons usually
enter the spindle together with the sensory fibers in the
central region but innervate intrafusal muscle fibers ex-
clusively in the polar regions. The endplates of γ-
motoneurons differ structurally from the neuromuscular
junctions formed by α-motoneurons on extrafusal fibers,
but both are cholinergic synapses with many features in
common, including junctional folds and a basal lamina
filling the synaptic cleft [47]. Moreover, both synapses
require the extracellular matrix synapse organizer agrin
and its receptor complex (consisting of the low-density
lipoprotein receptor-like protein 4 and the tyrosine kin-
ase MuSK) for their formation, suggesting a common
molecular basis for their synaptogenesis [49]. Gamma-
motoneurons induce contractions of sarcomeres in the
polar region to exert tension on the central region of
intrafusal fibers [47, 50]. This prevents the slackening of
intrafusal fibers during muscle shortenings and allows
for continuous adjustment of the mechanical sensitivity
of spindles over the wide range of muscle lengths and
stretch velocities that occur during normal motor
behaviors.

Muscle spindle development and ageing
Muscle spindle development starts during embryonic
stages but continues well into adult life [51]. Human

muscle spindles can be recognized in fetal tissue around
the 11th week of gestation [52, 53], but little is known
about the molecular basis of human muscle spindle de-
velopment. In contrast, muscle spindle development is
much better characterized in rodents, where muscle
spindle differentiation begins around embryonic day 14
when the growth cone of the sensory neuron’s axon
reaches its target muscle. Fusimotor innervation de-
velops a few days later and is present in mice at E19
[54]. In rodents and humans, immature myotubes are in-
duced to differentiate into intrafusal fibers when sensory
afferent axons contact the primary myotubes [55–57].
Apparently, nuclear bag fibers differentiate before nu-
clear chain fibers in rats [58, 59]. There is the possibility
of a hyperinnervation of intrafusal fibers with subse-
quent pruning of the terminals for the fusimotor innerv-
ation [60] as well as for the sensory innervation [61] of
rat muscle spindles. In mice, the intrafusal fibers are ini-
tially surrounded by a “web-like” network of sensory
axons, which is reduced to an adult primary ending from
a single sensory neuron (Fig. 3). Human muscle spindles
are functional at birth, but their response to stretch is
immature [30]. Moreover, with the postnatal increase in
muscle mass and mobility, sensory nerve terminals in
mice and humans undergo a number of anatomical and
physiological changes [62–64]. By postnatal day 18,
muscle spindle afferent firing is indistinguishable from
the firing in adult rats suggesting that muscle spindle
maturation continues into postnatal life and that muscle
spindles are capable of responding to stretch, even at an
age when their morphological and ultrastructural matur-
ation is not yet fully accomplished [65].
After the establishment of a physical contact between

the sensory axon and the primary myotube, both cells
exchange inductive signals ensuring the differentiation
of intrafusal fiber and the survival of the sensory neuron.
This reciprocal signaling is essential for muscle spindle
differentiation and intrafusal fiber development. Accord-
ingly, elimination of the sensory input (but not of the
fusimotor input) in embryonic and adult muscle spindles
results in a rapid degeneration of the intrafusal fibers
([66–68]; for review, see [55]). The key inductive factor
for the sensory neuron-mediated muscle spindle differ-
entiation is the immunoglobulin form of neuregulin-1
(Ig-Nrg1). Ig-Nrg1 is expressed by proprioceptive neu-
rons [69, 70], and its release from sensory neurons and
subsequent binding to the ErbB2 receptor expressed by
immature muscle fibers [71] induces their differentiation
into intrafusal muscle fibers. Accordingly, Nrg1- or
ErbB2-deficient mice do not initiate muscle spindle dif-
ferentiation, do not elaborate Ia afferent terminals and
have an ataxic behavior as well as abnormal hind limb
reflexes, consistent with severe proprioceptive deficits
[69–72]. Nrg1–ErbB2 signaling activates downstream
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targets such as the transcription factor early growth re-
sponse protein 3 (Egr3) [73–75], and the Ets transcrip-
tion factors Pea3, Erm and Er81 as well as the Grb2-
associated binder 1 protein, a scaffolding mediator of re-
ceptor tyrosine kinase signaling [69, 76, 77]. Although
muscle spindles are initially generated in Egr3-deficient
mice [75], subsequently most of them degenerate, result-
ing in ataxic behavior [73, 74]. Overexpression of Egr3 in
primary myotubes on the other hand leads to their dif-
ferentiation into intrafusal fibers [78], suggesting that
this transcription factor is necessary and sufficient for
muscle spindle maintenance. Interestingly, Ig-Nrg1 is
the substrate for the membrane-bound aspartyl protease
Bace1 (also called β-secretase 1). Cleavage of Ig-Nrg1 is
required for Ig-Nrg1 function and, accordingly, in the
absence of Bace1, muscle spindle numbers are reduced
and spindle maturation is impaired. Moreover, a graded
reduction in Ig-Nrg1 signal strength in vivo induced by
pharmacological Bace1 inhibition results in increasingly
severe deficits in the formation and maturation of
muscle spindles in combination with a reduced motor
coordination [70]. The continuous presence of Bace1
and Ig-Nrg1 is essential to maintain muscle spindles in
adult muscle, since either pharmacological inhibition of
Bace1 or induced Bace1 deficiency in adult propriocep-
tive neurons also leads to a decline of muscle spindle
number [70]. In summary, the sensory neuron induces
the differentiation of muscle spindles from immature
myotubes via Ig-Nrg1, Bace1 and ErbB2-mediated acti-
vation of Egr3.

On the other hand, muscle fibers release
neurotrophin-3 (NT3), which activates the tropomyosin
receptor kinase C (TrkC) receptor on proprioceptive
sensory neurons and by this secures the survival of the
sensory neuron [79–81]. The TrkC/NT3 signaling sys-
tem is, however, not required for the initiation of muscle
spindle differentiation [82]. Muscle-specific overexpres-
sion of NT3 results in an increase in the number of pro-
prioceptive afferents and muscle spindles [83–85]. NT3/
TrkC signaling induces the expression of the Etv1 (Er81)
transcription factor in proprioceptive sensory neurons
[76, 86]. Interestingly, the survival of proprioceptive sen-
sory neurons supplying distinct skeletal muscles differ in
their dependence on Etv1 for their survival and differen-
tiation [87]. The survival and/or specification of the
TrkC-positive proprioceptive afferents also requires the
expression of the Runt-related transcription factor 3
(Runx3) and Runx3-knockout mice display severe limb
ataxia due to absence of proprioceptive sensory neurons
[88, 89].
As in the musculoskeletal system in general, various

elements of the proprioceptive system decline during
ageing [90, 91]. These changes might contribute to the
frequent falls and motor control problems observed in
older adults. On the structural level, muscle spindles in
aged humans possess fewer intrafusal fibers, an increased
capsular thickness and some spindles which show signs
of denervation [92, 93]. In old rats, primary endings are
less spiral or non-spiral in appearance, but secondary
endings appeared unchanged [94, 95]. Likewise, in old

Fig. 3 Postnatal development of mouse muscle spindles. Muscle spindles from postnatal day 0: P0 (a), P8 (b), and P40 (c). Thy1-YFP mouse
extensor digitorum longus were stained with anti-GFP antibodies. Only the central (equatorial) region is shown. Note the transformation of the
“web-like” appearance of the sensory nerve terminal into the typical annulospiral ending during postnatal development. Scale bar in all panels:
50 μm
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mice, there is a significant increase in the number of Ia
afferents with large swellings that fail to properly wrap
around intrafusal muscle fibers. There is also a degener-
ation of proprioceptive sensory neuron cell bodies in the
dorsal root ganglion but no change in the morphology
and number of intrafusal muscle fibers [96]. In addition,
electrophysiological studies showed that mature rat
muscle spindles display a lower dynamic response of pri-
mary endings compared with those of young animals
[94]. Taken together, the proprioceptive system under-
goes significant structural and functional changes with
advancing age and the changes are consistent with a
gradual decline in proprioceptive function in elderly in-
dividuals and animals.

Muscle spindle structure and function in muscular
dystrophy
An impaired proprioception, in some cases associated
with an altered muscle spindle morphology, has been
documented as a secondary effect in many diseases.
These include Parkinson’s disease [97], Huntington’s dis-
ease [98], multiple sclerosis [99], Charcot-Marie-Tooth
type 2E [100], traumatic or neurotoxic injury [101],
spinal muscular atrophy [102], diabetic neuropathy [103,
104] and myasthenia gravis [105, 106]. In amyotrophic
lateral sclerosis, sensory neurons are similarly affected as
α-motoneurons [107–110]. They accumulate misfolded
SOD1 protein and the annulospiral endings degenerate,
leading to ataxia and motor control problems [107, 109].
In contrast to α-motoneurons, γ-motoneurons appar-
ently survive degeneration in murine models of amyo-
trophic lateral sclerosis and spinal muscular atrophy
[111–113], suggesting differential vulnerabilities for both
types of motoneurons in both diseases.
Recently, a number of studies have analyzed proprio-

ception and muscle spindle function in patients with
muscular dystrophy and in dystrophic mouse models.
Muscular dystrophies are a heterogeneous group of
more than 30 different mostly inherited diseases charac-
terized by muscular weakness and atrophy in combin-
ation with degeneration of the musculoskeletal system
[114]. The molecular basis of many muscular dystro-
phies are mutations that directly or indirectly influence
the function of the dystrophin-associated glycoprotein
complex (DGC) [115, 116]. The most common form of
muscle dystrophy in humans is Duchenne muscular dys-
trophy (DMD) which affects approximately 1 in 5000
boys [117]. DMD is caused by mutations in the DMD
gene, which codes for the large cytoskeletal protein dys-
trophin [114]. In skeletal muscle, dystrophin links sub-
sarcolemmal F-actin filaments to the extracellular matrix
via the DGC [118, 119]. This link mechanically stabilizes
the sarcolemmal membrane particularly during muscle
contraction. Mutations which cause an interruption of

the dystrophin/DGC-mediated molecular connection
lead to mechanical lability of the sarcolemmal mem-
brane and subsequent contraction-induced damage [114,
120–122]. While regeneration of damaged muscle fibers
occurs initially, it cannot compensate for the prolonged
degenerative loss of muscle tissue [123], leading over
time to a reduction of muscle mass, loss of contractile
force and, in the case of DMD, to premature death of
the affected person due to respiratory or cardiac muscle
failure [124].
Many muscular dystrophy patients suffer from postural

instability, sudden spontaneous falls and poor manual
dexterity [125–128], suggesting that their proprioceptive
system might be impaired. However, only minor morpho-
logical changes in muscle spindles were detected in hu-
man dystrophic muscles. These changes primarily affect
the connective tissue surrounding intrafusal fibers. For ex-
ample, thickening of the capsule and of the connective tis-
sue septa inside the spindle and an “oedematous swelling”
of the spindle were reported in muscle biopsy specimens
from Duchenne- and limb-girdle muscular dystrophy pa-
tients [106]. Likewise, analyses of biopsy specimens from
patients with muscular dystrophy and with congenital dys-
trophy revealed an increased thickness of the spindle cap-
sule and a slight decrease of the intrafusal fiber diameter
[129]. An autopsy study of seven DMD patients aged 15
to 17 years reported more severe pathological changes in-
cluding degenerative changes, atrophy and loss of intrafu-
sal muscle fibers [130], but it is unclear if these more
extensive changes were caused by the disease or due to
postmortem tissue degeneration. This possibility has to be
considered, since proprioceptive functions of muscle spin-
dles in DMD patients appear rather normal (see below)
and since a recent study analyzing muscle spindles from a
27-year-old severely affected DMD patient described that
spindle size and number as well as the size of intrafusal
myofibers and capsule thickness were in the normal range
[131]. Interestingly, the extrafusal fibers directly surround-
ing the muscle spindles were also less affected by the de-
generative events compared to fibers further away from
the spindle, suggesting the possibility of a more protective
environment directly around muscle spindles.
Likewise, murine models for several muscular dystro-

phies display only minor changes in muscle spindle
structure compared to wildtype control mice. For ex-
ample, muscle spindles in the soleus muscle from 1-
year-old C57BL/6Jdy-2J/dy-2J (Lama2dy2J/dy2J) dystrophic
mice, a model for laminin α2 (merosin)-deficient con-
genital muscular dystrophy, had a small but significant
increase in the diameter of the outer capsule and in the
overall thickness of the equatorial region [132]. But, as
in the corresponding patients, intrafusal fibers and sen-
sory terminals appeared mostly spared from degener-
ation [44, 132]. Similarly, the DMDmdx mouse line [133],
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a widely used model system for muscular dystrophy of
the Duchenne type [134], revealed no reduction of the
total number of muscle spindles and no change in the
structure of muscle spindles and their sensory innerv-
ation [135, 136]. Thus, compared to extrafusal muscle fi-
bers, the morphology of intrafusal muscle fibers and of
muscle spindles generally appear much less affected by
the degenerative processes in humans and in mice with
Duchenne-type muscular dystrophy.
The mechanism(s), which protect intrafusal myofibers

from degeneration and wasting, are unknown. Capsular
thickening in the equatorial region may be an adaptive re-
sponse, preventing the intrafusal fibers from undergoing
atrophy. Another explanation for the sparing of muscle
spindles in DMD patients could be a better maintenance
of the intracellular calcium homeostasis similar to what
has been described for extraocular muscles [137]. Further-
more, the mild phenotypic effect of the dystrophin muta-
tions might be due to the different surface-to-volume
ratio, compared to extrafusal fibers. Intrafusal fibers are
thinner compared to extrafusal fibers, have a much
smaller mechanical burden, and generate considerably less
contractile force. They are therefore less likely to suffer
from mechanical damage [138].
Immunohistochemical analysis showed that dystrophin

is present in the sarcolemma of the polar regions of
intrafusal fibers [139]. In contrast, in the equatorial re-
gion, dystrophin is absent from that part of the intrafusal
fiber, which is in contact with the sensory nerve terminal
but concentrated in parts without sensory nerve contact
[136, 139] (Fig. 4a–d). Other proteins of the DGC (in-
cluding alpha-dystrobrevin1; Fig. 4k) have a similar dis-
tribution. The area, where the DGC is concentrated, also
corresponds to the region where the intrafusal fiber has
direct contact to the basal lamina. The interaction of
DGC components with basal lamina proteins might
stabilize and help to maintain the subcellular concentra-
tion of the DGC in this region of the intrafusal fiber. In
any case, the unusual distribution of DGC components
indicates a molecular specialization in particular regions
of the intrafusal fiber plasma membrane.
As expected, dystrophin is absent in intrafusal fibers of

DMDmdx mice [136] (Fig. 4e–g). However, utrophin ex-
pression is markedly upregulated and has a similar dis-
tribution in DMDmdx mice as dystrophin in wildtype
mice [136] (Fig. 1e–j). Utrophin is an autosomally
encoded paralogue of dystrophin [136]. It shares more
than 80% amino acid sequence similarity to dystrophin,
has a similar domain structure and like dystrophin can
interact with actin filaments and with DGC components
[140]. In skeletal muscle, utrophin is highly expressed in
fetal and regenerating muscle fibers [141, 142]. In adult
wildtype muscle fibers, utrophin is replaced by dys-
trophin along the entire sarcolemmal membrane but

remains present at the neuromuscular junction, the
myotendinous junction and blood vessels [143–146]. In
extrafusal muscle fibers from DMDmdx mice, utrophin is
greatly upregulated and present along the entire sarco-
lemma [147, 148]. The upregulation of utrophin expres-
sion in extrafusal muscle fibers can lessen or even
prevent the dystrophic phenotype in DMDmdx mice and
muscular dystrophy patients [149–153]. The upregula-
tion of utrophin in intrafusal fibers of DMDmdx mice
might therefore functionally compensate for the absence
of dystrophin and prevent the degeneration of intrafusal
fibers. However, intrafusal muscle fibers from DMD pa-
tients are utrophin-negative [131], suggesting that the
upregulation of this protein cannot solely explain the
preservation of intrafusal muscle fibers in humans.
An obvious question arising from these observations is

whether the relatively minor structural changes in
muscle spindles from DMD patients and corresponding
mouse models are accompanied by functional changes.
Analysis of single unit sensory afferent recordings from
DMDmdx mice showed that muscle spindles have a nor-
mal response to ramp-and-hold stretches and only a
slightly increased response to sinusoidal vibrations [136].
More strikingly, the resting discharge, i.e. the action po-
tential frequency of sensory afferents from a resting
muscle spindle (Fig. 2), was significantly increased in
DMDmdx mice compared to control mice. This increase
in the resting discharge might be clinically relevant since
it would cause an increased muscle tone via the muscle
stretch reflex, which would lead to an increase in muscle
stiffness and an aggravation of the degenerative events in
extrafusal fibers of DMD patients.
Interestingly, a similar increase of the resting discharge

was observed in SJL-Dysf C57BL/6 (dysf−/−) mice [136],
a murine model system for dysferlinopathies [154, 155].
Dysferlinopathies (including limb girdle muscular dys-
trophy 2B and Miyoshi myopathy) are muscular dystro-
phies characterized by muscle weakness and wasting but
differ from DMD in the molecular etiology and disease
progression [156]. They are caused by mutations in the
DYSF gene that impair the function of dysferlin [157–
159], a single pass transmembrane protein with import-
ant roles in membrane fusion and trafficking [156, 160,
161]. When microlesions in the plasma membrane
occur, vesicles are recruited to the injury site and dysfer-
lin then appears to participate in the resealing of the in-
jury site by promoting vesicle aggregation and fusion
with the plasma membrane [162, 163]. Accordingly, loss
of dysferlin leads to an impaired membrane repair and
degeneration of skeletal muscle fibers, causing the
muscle weakness. Additional functions of dysferlin, in-
cluding an impaired Ca2+ homeostasis during mechan-
ical stress [164], might contribute to the degeneration of
skeletal muscle. Like in the DMDmdx mouse, muscle
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spindle number and morphology of intrafusal fibers and
their innervation were not changed, but the resting dis-
charge frequency was increased qualitatively and quantita-
tively similar to DMDmdx mice [136]. The similarity of the
functional changes in DMDmdx and dysf−/− mice suggests
a common deficit in both mouse strains, but the molecu-
lar mechanism is unknown. The double-mutant mice did
not have an aggravated phenotype, suggesting that both
mutations coalesce on the same pathway [136].
In contrast to the functional changes in murine model

systems for different forms of muscular dystrophy, little
if any functional deficits have been observed in muscular
dystrophy patients. For example, muscular dystrophy

patients perceive passive movements, experience illusory
movement induced by muscle tendon vibration, and
have proprioceptive-regulated sways in response to vi-
bratory stimulation applied to the neck and ankle muscle
tendons [165]. Moreover, reinforcement maneuvers in-
creased the sensitivity of muscle spindle afferents to im-
posed movements of the ankle in a similar way in DMD
patients and in non-affected controls [166]. These find-
ings argue for either preserved proprioceptive functions
of muscle spindles or the activation of compensatory
mechanisms.
The morphological phenotype in Duchenne muscular

dystrophy is rather mild, but are considerably more

Fig. 4 Distribution of the dystrophin glycoprotein complex in mouse intrafusal fibers. Panel a shows two intrafusal fibers labeled by anti-
dystrophin antibodies (red channel) and by antibodies against the vesicular glutamate transporter 1 (vGluT1; white channel). Panels b–d show
the boxed area in panel c at a higher magnification. Note that dystrophin is concentrated in the intrafusal fiber plasma membrane in areas that
are not in contact with the sensory neuron. The blue color represents nuclei stained with 4′,6-diamidin-2-phenylindol (DAPI). Panels e–j show the
distribution of utrophin (red channel) in the central region of muscle spindles from wildtype (e–g) and from DMDmdx mice (h–j). Anti-vGluT1
antibodies (green channel in panels e–j) were used to label the sensory nerve terminal. Panels d, g and j show the merged channels. Utrophin is
not detectable in the equatorial region of muscle fibers from wildtype mice (e) but severely upregulated in intrafusal fibers from DMDmdx mice
(h). Note the absence of utrophin in the contact area between intrafusal fiber and sensory nerve terminal. Asterisks mark corresponding positions
in all panels. Panel k shows a single confocal section of a muscle spindle stained with antibodies against vGluT1 (magenta) and against
dystrobrevin (green) to indicate that other components of the DGC have a similar distribution as dystrophin, i.e. are concentrated in areas of the
intrafusal fiber that are not in contact with the sensory nerve terminal
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severe in muscle spindles from patients with myotonic
dystrophy, where extensive intrafusal fiber splitting was
reported [167, 168]. In addition, sensory endings were
undetectable on nuclear bag and nuclear chain fibers. In
agreement with these pronounced ultrastructural
changes, areflexia has been reported in myotonic dys-
trophy [169], congenital dystrophies [170] and centro-
nuclear myopathy [171], but not in patients with tibial
muscular dystrophy [172].
In summary, studies in humans and mice with muscu-

lar dystrophies show various degrees of impairment of
muscle spindle function and proprioception. The deficits
could alter joint coordination, impair movements and
contribute to the instable gait, frequent falls and motor
control problems of muscular dystrophy patients. Care-
givers and patients should therefore consider an im-
paired proprioception when developing guidelines and
when testing new interventions.

Therapeutic strategies to improve muscle spindle
function and proprioception
The most prevalent symptom of all muscular dystrophy
patients is the loss and wasting of skeletal muscle tissue.
Therefore, common therapeutic interventions for pa-
tients with muscular dystrophy must aim at increasing
muscle strength and reducing muscle fatigue and degen-
eration. A proprioceptive impairment is certainly not the
sole cause for the motor control problems in these pa-
tients, but the important role of the sensory system con-
trolling motor coordination should not be ignored. In
any neuromuscular disease, therapeutic strategies should
therefore also aim at restoring/maintaining propriocep-
tion and muscle spindle function.
Several ways of improving muscle spindle function in

dystrophic patients can be envisioned. The recent identi-
fication of the Piezo2 channel as the primary mechano-
transduction channel [6, 173] might be exploited to
develop drugs, which specifically target mechanosensitiv-
ity without interfering with extrafusal muscle fiber func-
tion or with neuromuscular transmission [174]. These
drugs could either directly affect the Piezo2 channel
[175] or indirectly, for example via modulatory Gi-
coupled receptors [176]. However, potential drugs still
await clinical trials and approval and side effects due to
interference with Piezo2 channels in non-muscle tissues
might limit their application [174].
Alternatively, training of the proprioceptive sense is a

valuable behavioral therapy for improving impaired
motor function and can significantly improve motor
control dysfunctions in many neuromuscular disorders
and in aging-related proprioceptive decline [177]. Spe-
cific proprioceptive training can improve balance control
[178], motor learning [177] and walking parameters
[179]. A vibratory-based proprioceptive training has

been successfully used during rehabilitation to reduce
the decline of motor control in subjects with facioscapu-
lohumeral muscular dystrophy [180] and with Parkinson
patients [181]. In muscular dystrophy patients, this train-
ing slows down the deleterious effects of the gradual de-
cline of motor abilities [166]. Since muscle spindle
afferent firing is modified by the emotional context
[182], it is conceivable to exploit the emotional situation
and vibrational stimuli during physical rehabilitation or
training to increase proprioceptive acuity.
Finally, muscle spindle preservation in DMD may be

an important factor to exploit new therapeutic ap-
proaches for muscular dystrophy patients. For example,
the strong upregulation of the utrophin expression in
intrafusal fibers from DMDmdx mice [136] might be used
to investigate the regulation of the utrophin expression
in more detail. Since utrophin can functionally compen-
sate dystrophin deficiency, a better understanding of the
signaling cascade underlying utrophin upregulation in
DMDmdx mice might aid in developing strategies for a
pharmacological or genetic activation of utrophin ex-
pression [183], which might also be applicable to upreg-
ulate utrophin expression in extrafusal fibers.
In summary, therapeutic strategies for muscular dys-

trophy patients should include in addition to strengthen-
ing the contractile muscle force, the preservation of
muscle spindles and the sensitization of proprioception
in order to maintain appropriate motor control and a
stable gait and posture.
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