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The ties that bind: functional clusters in

limb-girdle muscular dystrophy
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Abstract

The limb-girdle muscular dystrophies (LGMDs) are a genetically pleiomorphic class of inherited muscle
diseases that are known to share phenotypic features. Selected LGMD genetic subtypes have been studied
extensively in affected humans and various animal models. In some cases, these investigations have led to
human clinical trials of potential disease-modifying therapies, including gene replacement strategies for
individual subtypes using adeno-associated virus (AAV) vectors. The cellular localizations of most proteins
associated with LGMD have been determined. However, the functions of these proteins are less uniformly
characterized, thus limiting our knowledge of potential common disease mechanisms across subtype
boundaries. Correspondingly, broad therapeutic strategies that could each target multiple LGMD subtypes
remain less developed. We believe that three major “functional clusters” of subcellular activities relevant to
LGMD merit further investigation. The best known of these is the glycosylation modifications associated with
the dystroglycan complex. The other two, mechanical signaling and mitochondrial dysfunction, have been
studied less systematically but are just as promising with respect to the identification of significant
mechanistic subgroups of LGMD. A deeper understanding of these disease pathways could yield a new
generation of precision therapies that would each be expected to treat a broader range of LGMD patients
than a single subtype, thus expanding the scope of the molecular medicines that may be developed for this
complex array of muscular dystrophies.
Key points

� There is a diverse array of genetic subtypes of limb-
girdle muscular dystrophy (LGMD).

� The cellular localizations of various proteins
associated with LGMD have been characterized, but
currently there is little knowledge of unifying disease
mechanisms across multiple subtypes.

� We propose that functional clusters of LGMD
proteins can illuminate disease mechanisms that are
shared across disease subtypes and identify potential
therapeutic targets.
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� One functional cluster that has been defined better
than others is composed of the
dystroglycanopathies.

� Two other functional clusters that bear further
study are mechanical signaling defects and
mitochondrial dysfunction.

Introduction
In the field of inherited neuromuscular diseases, the
primary goal is to identify the underlying genetic cause
of the disease, ultimately to understand mechanisms
driving pathology, and by doing so, develop effective
therapeutic strategies. Nineteen eighty-six was a pivotal
year, when the DMD gene associated with Duchenne
muscular dystrophy (DMD) was discovered [1], followed
the next year by the identification of the encoded
protein dystrophin [2]. Similarly in the mid-1990s, the
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SMN1 gene associated with the most common form of
spinal muscular atrophy (SMA) was discovered [3].
These and many other similar discoveries led to inter-
national efforts to understand the underlying disease
processes and to develop therapeutic strategies targeting
the fundamental genetic defects. These endeavors have
recently begun to yield remarkable new precision medi-
cines. DMD and SMA are among the most common
inherited neuromuscular disorders, yet both are rare dis-
eases; birth prevalence ranges from 15.9 to 19.5 per 100,
000 for DMD [4] and 7.8 to 10 per 100,000 for SMA [5,
6]. It is not clear how such precise gene-specific and
mutation-specific therapeutic development pipelines can
be extended to diseases that are even rarer in an eco-
nomically sustainable manner. Furthermore, it has be-
come apparent that direct replacement of deficient
genes face technical barriers in humans such as immune
responses [7] and that, even if successful, such therapies
may not necessarily be curative. Specifically, the progres-
sion of any neuromuscular disease leads to secondary
consequences, including fatty-fibrotic replacement of
muscle, and motor unit compression or loss, which may
have already occurred by the time the gene therapy is
administered [8].
LGMD, a category of muscular dystrophy distinct from

DMD, presents two major dilemmas with respect to pre-
cision medicine approaches. The first is that even col-
lectively, LGMDs as a whole are rarer than DMD or
SMA, with an estimated prevalence of 1.63 to 2.27 per
100,000 [9, 10]; in a large population-based surveillance
study, LGMDs composed 9.1% of all muscular dystro-
phies identified [11, 12]. The second is that unlike these
other two diseases, LGMD is composed of an astonish-
ing diversity of genetic etiologies, numbering at least 30
and counting. The numbers have grown so large that
they have outgrown the traditional classification system,
resulting in a new recently adopted system [13] (Tables
1 and 2). The recessive forms are more common than
the dominant ones, with one recent study finding an
84%/16% distribution in a large cohort from Italy [64].
In large, genetically heterogeneous populations, certain
subtypes such as LGMD R1 (CAPN3), LGMD R2
(DYSF), LGMD R3 (SGCA), LGMD R4 (SGCB), LGMD
R5 (SGCG), LGMD R6 (SGCD), LGMD R9 (FKRP), and
LGMD R12 (ANO5) tend to be relatively common [64,
65], with founder effects in specific regions making it
difficult to calculate worldwide prevalence for any
particular subtype [12, 66–79]. In contrast, the other
subtypes are exceedingly rare except in some genetically
isolated populations; many have only been described in
certain regions of the world, and there remain a large
number of genetically unsolved LGMD cases, both in
clinical cohorts [80, 81] and research cohorts [53, 68, 82,
83]. The search for genetic diagnoses in these cases
paves the way for potential precision medicine strategies,
but the diagnostic odyssey can be quite prolonged for
certain individuals, thus delaying definitive genetic coun-
seling and potential eligibility for clinical trials as well as
novel therapies that are likely to be approved in coming
years.

Therapeutic strategies for individual LGMDs
A widening stream of increasingly sophisticated molecu-
lar therapies is under development for individual LGMD
subtypes. Though none has been approved by the FDA
to date, it is becoming increasingly likely that such
approvals will occur in the near future. Single gene
replacement strategies have been investigated in animal
models for some time, primarily using adeno-associated
virus (AAV) vectors that contain DNA sequences for in-
dividual LGMD genes, such as CAPN3 [84, 85], DYSF
[86–89], FKRP [90–93], SGCA [94–100], SGCB [95, 101,
102], and SGCD [103–105], and SGCG [106, 107]. Such
efforts have accelerated and moved into human clinical
trials for genes such as SGCG [108], inspired in part by
an FDA-approved gene therapy for spinal muscular
atrophy [109] and ongoing human studies of micrody-
strophin gene therapy for DMD [110]. Host immune
responses have been a major concern in the implemen-
tation of gene therapy for human patients [111]. For
various subtypes of LGMD, the residual protein expres-
sion may not only explain the milder phenotypes seen in
some affected individuals but also has the potential to
spare patients from host immune responses to the trans-
gene in the setting of gene therapy approaches [112].
Compensation for and correction of specific mutations

has also been studied. Antisense oligonucleotides have
been used to rescue specific DYSF mutations [113], as
well as the most common pathogenic SGCG mutation
[114, 115], both in mouse models. CRISPR-Cas9 genome
editing was used to correct mutations in induced pluri-
potent stem cells (iPSCs) derived from human patients
with CAPN3 mutations, and those corrected cells were
able to treat Capn3 deficiency in a mouse model [116].
There have been some attempts to deliver one

LGMD-associated gene using AAV in hopes of rescuing
a different LGMD subtype in cases where the two pro-
tein products share functional overlap. However, these
studies have been largely disappointing to date, including
an investigation of ANO5 delivery into DYSF deficient
mice, with a rationale that both protein products partici-
pate in sarcolemmal membrane resealing [117]. The
membrane-resealing pathway has also been targeted via
overexpression of MG53, with some promising results in
mouse models of SGCD [118] and DYSF [119] deficien-
cies. The development of molecular therapies that target
more than one LGMD subtype should be feasible. How-
ever, it is clear that we do not know enough about



Table 1 Recessive forms of LGMD, listed by the new 2018 classification system [13], with old subtype nomenclature in parentheses

Subtype Gene Protein Cellular
localization

Protein function

LGMD R1 (LGMD2A) CAPN3 [14] Calpain 3 Myofibril [15] Cysteine protease

LGMD R2 (LGMD2B) DYSF [16, 17] Dysferlin Sarcolemma Membrane
resealing [18, 19]

LGMD R3 (LGMD2D) SGCA [20] α-Sarcoglycan Sarcolemma Mechanosensor

LGMD R4 (LGMD2E) SGCB [21, 22] β-Sarcoglycan Sarcolemma Mechanosensor

LGMD R5 (LGMD2C) SGCG [23] γ-Sarcoglycan Sarcolemma Mechanosensor

LGMD R6 (LGMD2F) SGCD [24] δ-Sarcoglycan Sarcolemma Mechanosensor

LGMD R7 (LGMD2G) TCAP [25] Telethonin Sarcomere Sarcomere assembly
and maintenance [26]

LGMD R8 (LGMD2H) TRIM32 [27] TRIM32 Myofibril [28] E3-ubiquitin-ligase

LGMD R9 (LGMD2I) FKRP [29] Fukutin-related protein Golgi apparatus Glycosylation

LGMD R10 (LGMD2J) TTN [30] Titin Sarcomere [31] Various

LGMD R11 (LGMD2K) POMT1 [32] Protein O-mannosyltransferase 1 Endoplasmic
reticulum

Glycosylation

LGMD R12 (LGMD2L) ANO5 [33] Anoctamin5 Sarcolemma Membrane resealing

LGMD R13 (LGMD2M) FKTN [34, 35] Fukutin Golgi apparatus Glycosylation

LGMD R14 (LGMD2N) POMT2 [36] Protein O-mannosyltransferase 2 Endoplasmic
reticulum

Glycosylation

LGMD R15 (LGMD2O) POMGnT1 [37,
38]

Protein O-linked mannose N-
acetylglucosaminyltransferase 1

Golgi apparatus Glycosylation

LGMD R16 (LGMD2P) DAG1 [39] Dystroglycan 1 Extracellular matrix Stabilize sarcomeric
cytoskeleton [40]

LGMD R17 (LGMD2Q) PLEC [41] Plectin Cytosol Stabilize intermediate
filaments [42–44]

LGMD R18 (LGMD2S) TRAPPC11 [45] Trafficking protein particle complex 11 Golgi apparatus Intracellular vesicle
trafficking

LGMD R19 (LGMD2T) GMPPB [46] GDP-mannose pyrophosphorylase B Cytosol Glycosylation

LGMD R20 (LGMD2U) ISPD/CRPPA
[47]

CDL-L-ribitol pyrophosphorylase A Cytosol Glycosylation

LGMD R21 (LGMD2Z) POGLUT1 [48] Protein O-glucosyltransferase 1 Endoplasmic
reticulum

Notch signaling

LGMD R22 (none) COL6A1
COL6A2
COL6A3

Collagen 6α1
Collagen 6α2
Collagen 6α3

Extracellular matrix Regulation of satellite cell
self-renewal and muscle
regeneration [49]

LGMD R23 (none) LAMA2 Laminin α2 Extracellular matrix Regulation of autophagy-lysosome
pathway [50, 51]

LGMD R24 (none) POMGNT2 Protein O-linked mannose N-
acetylglucosaminyltransferase 2

Endoplasmic
reticulum

Glycosylation

LGMD R25 (LGMD2X) BVES [52] Blood vessel epicardial substance Sarcolemma Membrane trafficking [52]

LGMD R, number
pending

PYROXD1 [53,
54]

Pyridine nucleotide-disulfide
oxidoreductase domain-containing protein 1

Nucleus Pyridine nucleotide-disulfide
reductase [55]

Many of the protein functions listed require further confirmation or are disputed
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common disease mechanisms that cross multiple sub-
type boundaries, and effective molecular targets are
likely to include genes that are not necessarily directly
associated with LGMD subtypes.

Functional clusters in LGMD
Although clinical trials testing a variety of strategies are
in progress, there are currently no FDA-approved,
disease modifying therapies for any subtype of LGMD
[120]. Even as LGMD-targeting gene replacement strat-
egies likely reach approval over the coming years, there
will remain LGMD subtypes with low numbers of
patients, cohorts of patients with unknown mutations,
and patients from a variety of subtypes for whom the
potential benefits of a gene or mutation-specific therapy
may never exceed the inherent risks associated with



Barton et al. Skeletal Muscle           (2020) 10:22 Page 4 of 13
these methodologies. Those patients with moderate dis-
ease phenotypes regardless of the underlying causative
gene mutation would likely fall into a category where
there may be interest in testing a pharmacological treat-
ment (that could be halted) but reduced interest in a
more permanent experimental strategy. For all of the
above-mentioned reasons, the identification of unifying
therapeutic targets applicable to multiple subtypes of
LGMDs is highly desirable.
To identify such targets, we should first consider the

question: What binds all of these LGMDs together? The
two core phenotypic features are progressive proximal
muscle weakness, along with characteristic signs of
muscle fiber destruction on biopsy, referred to as “dys-
trophic” features. Nuances in clinical presentation have
helped to distinguish some of the LGMDs, such as the
frequent occurrence of difficulty walking on tiptoes in
LGMD R2 (LGMD2B), caused by dysferlin deficiency.
However, heterogeneity associated with variable ages of
onset and ranges of severity makes it generally difficult
to distinguish and diagnose LGMD subtypes based on
clinical presentation alone. A change in perspective is in
order to aid in understanding disease pathways respon-
sible for clinical features even when the genetic mutation
is unknown. Further, given the large number of gene-
specific LGMD subtypes, it could very well be that
several major disease mechanisms may be shared across
the family of diseases. Yet despite careful studies that
have collectively determined the cellular localization of
most proteins associated with LGMD (Fig. 1), there is
limited knowledge of potentially unifying molecular dis-
ease mechanisms. We assert that the identification of
functional clusters of these proteins, grouped by such
common mechanisms, will streamline our understanding
of the disease processes and identify therapeutic targets
relevant to individuals in multiple disease subgroups, in-
cluding individuals whose pathogenic mutations have
not been found. By extension, this approach may serve
as a tool to not only find common mechanisms, but may
Table 2 Dominant forms of LGMD, listed according to the new 201
parentheses

Subtype Gene Protein

LGMD D1 (LGMD1D) DNAJB6 [56, 57] DNAJB6

LGMD D2 (LGMD1F) TNPO3 [59, 60] Transportin 3

LGMD D3 (LGMD1G) HNRNPDL [63] Heterogeneous nuclear
ribonucleoprotein D-like

LGMD D4 (LGMD1I) CAPN3 Calpain 3

LGMD D5 COL6A1
COL6A2
COL6A3

Collagen 6α1
Collagen 6α2
Collagen 6α3

Many of the protein functions listed require further confirmation or are disputed
also help to distinguish LGMD subtypes that do not
share similar functional patterns, and afford further re-
finement of potential treatments.
Even though genetic mutations causing LGMD encode

a diverse array of proteins (Tables 1 and 2), it is likely that
additional functional clusters exist within the LGMD
population. A review of the LGMD literature strongly
suggests that two potential novel clusters of LGMD focus
on defects of mechanical signal transduction and mito-
chondrial function. As described in the following sections,
the mechanical signal transduction cluster may represent
a pathway that triggers a maladaptive cascade with each
contraction. In contrast, the mitochondrial function
cluster may represent a common cellular response to
disrupted homeostasis arising through many different
triggers, including aberrant mechanical signaling.

Glycosylation of dystroglycan proteins
The functional cluster that is by far the most fully devel-
oped encompasses the dystroglycanopathies. Diseases in
this family are bound together by impaired glycosylation of
dystroglycans. Genetic mutations that impair this process
have been found in a number of genes encoding enzymes,
localized primarily at the Golgi apparatus and sarcoplasmic
reticulum, that contribute to the normal process of dystro-
glycan glycosylation (Fig. 1). These genes include FKRP,
POMT1, FKTN, POMT2, POMGnT1, ISPD, POMGNT2,
and GMPPB (Table 1). These genes were first associated
with severe forms of congenital muscular dystrophy, a re-
lated yet distinct category of muscular dystrophy, and then
subsequently also associated with milder forms of dystro-
glycanopathy that met phenotypic criteria for LGMD. The
corresponding encoded enzymes fukutin-related protein
[29], protein O-mannosyltransferase 1 [121], fukutin [122],
protein O-mannosyltransferase 2 [123], protein O-linked
mannose N-acetylglucosaminyltransferase 1 [124], CDL-L-
ribitol pyrophosphorylase A [125, 126], protein O-linked
mannose N-acetylglucosaminyltransferase 2 [127], and
GDP-mannose pyrophosphorylase B [46] contribute to the
8 classification system [13], with old subtype nomenclature in

Cellular localization Protein function

Nucleus (DNAJB6a) [58]
Sarcoplasm (DNAJB6b) [58]

Z disc organization [58]

Nuclear membrane Transports serine/arginine-rich
proteins into nucleus [61, 62]

Nucleus [63] RNA processing [63]

Myofibril Cysteine protease

Extracellular matrix Regulation of satellite cell
self-renewal and muscle
regeneration [49]



Fig. 1 Schematic diagram of proteins associated with LGMD and other muscle diseases such as DMD. When specific proteins are known to
interact, they are portrayed as overlapping. The extracellular space occupies the upper portion of the diagram. The double line in the middle
represents the sarcolemma. The bottom portion shows the intracellular compartments, including the sarcoplasm, sarcomere, nucleus, and
mitochondria. The diverse cellular localizations of proteins associated with both recessive and dominant forms of LGMD highlight the need to
organize the proteins into functional clusters that can identify common disease mechanisms and new therapeutic targets. The best known
functional cluster to date is the glycosylation pathway that helps create and maintain the dystroglycan complex. The dystroglycanopathy genes
include FKTN, FKRP, POMT1, POMT2, POMGnT1, POMGNT2, ISPD, and GMPPB. The postulated second functional cluster relates to mechanical
signaling, which is critical for communications among the contractile apparatus, the surrounding sarcoplasm, the sarcolemma, and the
extracellular matrix. The MAPK pathway has been found to be involved in numerous subtypes of LGMD. The sarcoglycan complex in particular is
emerging as a key mechanosensor. Other LGMD proteins such as calpain 3 and dysferlin may be additional components of this cluster, or
represent independent clusters. The postulated third functional cluster centers around mitochondrial dysfunction, which has been shown to be
present in LGMD R1-R6 (LGMD2A-2F), with hints of involvement in newer LGMD genes such as PYROXD1
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process of O-mannosyl glycosylation of α-dystroglycan be-
fore it is transported to the sarcolemma.
Knowledge of the dystroglycanopathies has advanced

to the point where experiments have studied the possi-
bility of targeting multiple disease subtypes. One such
therapeutic strategy is to overexpress LARGE, a dystro-
glycanopathy gene (currently associated only with a con-
genital muscular dystrophy phenotype) that induces
hyperglycosylation of α-dystroglycan; this approach has
augmented glycosylation in mouse models of two other
dystroglycanopathies, FKTN deficiency and POMGnT1
deficiency; these latter two genes have been associated
with LGMD as well as congenital muscular dystrophy
[128]. Another study demonstrated the therapeutic po-
tential of overexpressing ISPD in FKRP mutant mice
[129]. These investigations support the concept that tar-
geting specific components of the glycosylation pathway
shared within this functional cluster could provide thera-
peutic benefit for multiple LGMD subtypes.
Mechanical signaling defects in LGMD
Skeletal muscle adaptation can occur through changes in
active or passive workload converging into final com-
mon pathways. During active force generation, multiple
signals alter in parallel, including mechanical deform-
ation, phosphorylation patterns, calcium ion fluxes, and
local concentration (depletion) of high-energy substrates.
Distinct patterns in the MAP kinase family of proteins
are evident in healthy tissue in response to active length-
ening contractions. In one of the first studies examining
this phenomenon, Martineau and Gardiner established a
dose response of MAPK phosphorylation with respect to
strain and implicated Jnk as the most responsive MAPK
to active strain, with ERK1/2 responsive to both active
and passive tension, and p38 being relatively insensitive
to mechanical deformation [130]. Passive stretch insti-
gates signal transduction within muscle, such as transi-
ent induction of the p70S6K pathway [131, 132], but
because the energetic cost of active contraction is
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eliminated, the responses may provide insight into
signaling that is more closely aligned with mechanical
deformation. Signaling defects are evident in multiple
pathways and across many dystrophies. Aberrant signal-
ing is a feature of dystrophic muscle which occurs at
rest, during active force generation, and passive move-
ment [131, 133–139], summarized in Table 3.
A key contributor to mechanosensing is the sarcogly-

can complex. The discovery of α-SG (Sgca) and γ-SG
(Sgcg) phosphorylation in response to adhesion of cul-
tured cells led to the proposal that the SG sub-complex
regulates mechanosensing [152]. We, and others, have
proposed that the SG complex is a critical part of the
mechanical signaling machinery and that absence of this
complex alters signaling [131, 133, 153, 154]. In a mouse
model for LGMD R5 (LGMD2C), ablation of Sgcg
causes severe pathology, yet there is little mechanical
fragility [155]. However, distinct hyper-signaling through
ERK1/2 occurs at rest and with active eccentric contrac-
tions with loss of Sgcg [133]. Mechanosignaling may not
only originate in the complex but also in modifiers the
complex: tyrosine phosphorylation of Sgcg occurs fol-
lowing active and passive strain changes in the muscle
Table 3 MAPK pathway phosphorylation changes associated with m
muscle

Pathway Disease Finding

Jnk (Thr183/
Tyr195)

Healthy Jnk activation directly correlated to

Healthy Resistance exercise stimulates P-JNK

DMD (mdx) Elevated P-JNK1 associated with pat
P54 > p46 in phosphorylation statu
phosphorylation status [142]

p38 (Thr180/
Tyr182)

Healthy Phosphorylated p38 is not sensitive

LGMD2C (Sgcg−/−) Stretched myotubes have elevated

FSHD P38 inhibition reduces DUX4 expres

LGMD2B (SJL) Reduction of P-p38 by paloxamer18

DMD (mdx) Loss of MKP5 improves phenotype

LGMD2F (Sgcd−/−);
DMD (mdx)

Elevated p38 associated with patho
pathology;

LGMD2A (C3KO) Suppressed in sedentary and run co

ERK1/2
(Thr202/
Tyr204)

Healthy Erk phosphorylation correlated with

DMD (mdx) Elevated in resting diaphragm, with

LGMD2C (Sgcg−/−) Stretched myotubes have elevated

LGMD2C (Sgcg−/−) Resting elevated P-ERK1/2

LGMD2C (Sgcg−/−) Sustained levels with contraction bu

DMD (mdx);
LGMD2C (Sgcg−/−)

Uncoupling of mechano-signaling. E
DMD

LGMD2C Dusp6 (ERK phosphatase) genetic m

LGMD2F (Sgcd−/−) Increased ERK1/2 protects against d
of ERK1
[131, 134], and the loss of Sgcg phosphorylation also al-
ters the mechanical response even when the complex is
otherwise intact [134]. Indeed, the fact that this residue,
as well as others in the intracellular domain, has been
associated with severe autosomal recessive muscular
dystrophy (https://www.ncbi.nlm.nih.gov/clinvar/?term=
Sgcg%5Bgene%5D) point to this region of Sgcg as critical
for function. With this in mind, it suggests that proteins
involved in modulating the phosphorylation state of the
sarcoglycans may also be candidates for LGMD causing
mutations or modifiers of the severity of the symptoms.
In contrast to ERK and Jnk, p38 appears relatively in-

sensitive to strain, yet it may still serve as an indication
of disease. Activation of alpha and beta isoforms of p38,
in particular, are critical regulators of myoblast differen-
tiation [156, 157], hence reduced p38 activity may lead
to defects in muscle cell maturation or in regeneration
and growth. In addition, p38 is activated during
sustained muscle activity, and is one of the upstream
triggers for transcription of PPARγ coactivator (PGC)-1,
and ultimately mitochondrial biogenesis [158]. Thus, ab-
normal p38 activity may also underlie maladaptation as-
sociated with neuromuscular disease. Both consequences
echanical perturbation and neuromuscular diseases in skeletal

Citations
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of reduced P-p38 are evident in mice lacking calpain 3
(the protein deficient in LGMD R1 (LGMD2A)). The ad-
aptational response of calpain 3 null mice to exercise
training was blunted and associated with diminished P-
p38 as well as CAMKII signaling, implicating calpain 3
as an upstream regulator of these signaling pathways
[159]. Further, regenerative capacity and recovery from
disuse atrophy are also delayed [160, 161]. Even though
p38 activity may be depressed with the loss of calpain 3,
one cannot extend that disruption to other MAPK
proteins, or to aberrant mechanosignaling, and there is
no evidence to date to address this possibility.
Not only are there LGMD subtypes with low p38 ac-

tivity, several studies have demonstrated heightened p38
phosphorylation in mouse and cell models for LGMD
R2 (LGMD2B), LGMD R5 (LGMD2C), and LGMD R6
(LGMD2F), as well as facioscapulohumeral muscular
dystrophy (FSHD) and DMD [143, 144, 147]. Further
suppression of P-p38 ameliorated histopathology in
several of these disease models [144, 147], yet dis-
inhibition of p38 activity through ablation of the phos-
phatase, MKP5/Dusp10 also benefited mdx muscle
[146]. The dichotomy in the direction of aberrant signal-
ing suggests that this pathway must be properly tuned in
healthy muscle, but also may serve as a discriminating
feature for the specific genetic defect. Namely, defects in
the sarcoglycan complex and its associated proteins may
share elevated P-p38, whereas defects that are associated
with reduced calcium-mediated actions, such as with
calpain 3 mutations, may have reduced P-p38. By exten-
sion, heightened calcium entry may also exhibit higher
P-p38 levels.
How are these LGMD-dependent signaling defects

different from aberrant signaling associated with other
classes of muscular dystrophies? The loss of dystrophin
in DMD also displays aberrant signaling in the MAPK
pathways [141, 147, 149]. A common link to a subset of
LGMDs is the secondary loss of the sarcoglycan and dys-
troglycan complexes in DMD, potentially implicating
these subcomplexes as the underlying cause of the
signaling defects. However, loss of dystrophin is also ac-
companied by mechanical fragility of the muscle, and
this could also contribute to altered signaling. Hence,
the separation of mechanical fragility from disrupted
mechanical signaling is an important criterion to its
identity as a functional cluster.

Mitochondrial dysfunction in LGMD
An LGMD functional cluster that is based upon mito-
chondrial function may also help to explain in part the
observed variations in age of onset, speed of progression,
and overall severity that can vary between patients even
when the underlying causative gene is the same
[162–164]. This may occur through altered energy
production, impaired Ca2+ homeostasis, activation of
apoptosis, a combination of these, or currently unknown
roles for mitochondria in LGMD pathophysiology. Thus
far, studies have demonstrated altered mitochondrial
function in 6 LGMD subtypes (Table 4), and in one
example, variations in mitochondrial-mediated apoptosis
due to altered expression of the pro-survival protein
BCL2 correlated with disease severity in patients homo-
zygous for the same SGCG mutation (LGMD R5, also
known as LGMD2C) [53, 147, 163, 165–169]. In sum,
these studies strongly suggest that (1) mitochondria
impart a key contribution to the pathophysiology of
LGMD presentation, and (2) this aspect of dysfunction
in LGMD should be more thoroughly investigated across
subtypes and individuals to understand which aspects of
mitochondrial function are the most viable therapeutic
targets.
With respect to mitochondrial dysfunction, there is

solid evidence from prior work suggesting the presence
of mitochondrial dysfunction in several subtypes of
LGMD. However, there is no prior research exploring
the hypothesis that different forms of mitochondrial
dysfunction can help explain the spectrum of phenotypic
severity in different subtypes of LGMD. Thus far, no
study has systematically examined a thorough panel of
mitochondria-related assessments in multiple forms of
LGMD. Such studies would enable more optimal selec-
tion of patients most likely to benefit from potential
mitochondria-targeting treatment strategies based upon
their mitochondrial function profile.

Complementary disease mechanisms and
implications for therapy
As noted above, multiple studies indicate that both
mechanosignaling and mitochondrial dysfunction contrib-
ute to the disease mechanisms of LGMD R1 (LGMD2A),
LGMDR5 (LGMD2C), and LGMD R6 (LGMD2F), caused
by recessive mutations in CAPN3, SGCG, and SGCD, re-
spectively. It is expected that these two functional clusters,
along with glycosylation defects, intersect at various points
in their pathways. The interactions among these three
have not been explored in depth in prior work, and such
explorations would be expected to be quite fruitful with
respect to understanding the overall LGMD disease
process better. Importantly, the pathways involved in each
of these functional clusters can provide parallel evaluation
of potential therapeutics, as well as how modulation of
one pathway may alter aspects of others.
Genetic and pharmacologic modulation of mechano-

signaling and mitochondrial function support the possibil-
ity for these functional clusters to become therapeutic
targets. The rationale stems from either preventing
upstream triggers, such as mechanosignaling, to become
pathogenic, or shoring up muscles against the



Table 4 Mitochondrial evaluations of LGMDs in literature: listing of mitochondrial assessments and status of these readouts in
current LGMD literature

Functional measurement: Reported analyses in LGMD literature:

Activation of intrinsic apoptotic pathways • Variability in LGMD R5 (LGMD2C) patient severity based upon BCL2
expression levels in skeletal muscle [163]

• No activation in aged LGMD R6 (LGMD2F) cardiomyocytes [165]

Mitochondrial ultrastructure • Mitochondrial swelling in LGMD R6 (LGMD2F) cardiomyocytes [165]
• Mitochondrial swelling and disorganized structure in LGMD R1
(LGMD2A) patient skeletal muscle [166]

• Mitochondrial swelling in LGMD R6 (LGMD2F) [147, 167]
• Reduced mitochondrial cristae density in LGMD R3 (LGMD2D) [168]

Oxygen consumption • Reduced in LGMD R3 (LGMD2D) patient and mouse skeletal muscle [168]
• Reduced in PYROXD1 knockdown myoblasts [53]

Mitochondrial membrane potential/permeability
transition pore (mPTP) status

• Decreased potential and open mPTP in LGMD R6 (LGMD2F) [165]

Electron transport chain (ETC) expression • Altered CI and CIV expression in LGMD R2 (LGMD2B) patient muscle [169]
• Decreased ETC expression in LGMD R3 (LGMD2D) mouse diaphragm
muscle [168]

• Decreased CV expression in LGMD R6 (LGMD2F) mouse skeletal muscle
and heart [170]

mtDNA copy numbers • Reduced in LGMD R3 (LGMD2D) patient and mouse skeletal muscle [168]

Mitochondrial biogenesis • Defective mitochondrial biogenesis in LGMD R3 (LGMD2D) patient and
mouse skeletal muscle [168]

Mitochondrial Ca2+ uptake • Ca2+ overload in LGMD R6 (LGMD2F) cardiomyocytes [165]
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downstream consequences, such as mitochondrial un-
coupling. For example, inhibition of MAPK/ERK kinase
led to alleviation of cardiac complications in a mouse
model of laminA/C (LMNA) deficiency [171]. The MAPK
pathway has been linked to mechanosignaling in muscle
[130]. Metformin has been found to enhance autophagy
and provide cardioprotection in a mouse model of δ-
sarcoglycan (SGCD) deficiency, associated with LGMD R6
(LGMD2F) [172]. The therapeutic effect of metformin in
this context appears to arise at least in part from stimula-
tion of mitophagy [173]. Targeting cyclophilin D through
Debio 025 also appears to inhibit mitochondria-mediated
necrosis in multiple mouse models of muscular dystrophy
[167, 174]. These studies hint at the enormous untapped
potential of targeting shared disease pathways. However,
as these targets are in all cells, the balance between benefit
to muscle and detriment to other tissues must be
addressed.

Concluding section
Molecular therapies for selected subtypes of LGMD will
almost certainly be approved for clinical use in the next
several years, mirroring the revolutionary developments
in other neuromuscular diseases. However, the genetic
diversity of this disease group and the large number of
patients without genetic diagnoses suggest that two par-
allel tracks of therapeutic development are needed: (1)
gene-specific and even mutation-specific precision ther-
apies and (2) broader therapies that target common
downstream pathways. Several lines of investigation will
enhance the development of the latter: (1) in depth
evaluation of existing and new disease models to seek
transcriptomic, proteomic, and functional evidence for
associations with the postulated functional clusters;
(2) exploration of promising model systems such as
3-dimensional scaffolds and Drosophila that are
underutilized in the study of LGMD, with examina-
tions of both mechanistic and therapeutic questions;
(3) elucidation of the genetic etiologies of individuals
affected by LGMD who do not have easily identifiable
pathogenic mutations; (4) more precise replication of
common and biologically pivotal disease mutations
across the spectrum of LGMD subtypes. Further
elucidation of disease mechanisms for LGMD will
facilitate the development of an array of sophisticated
therapeutic approaches that will have a significant
beneficial impact on the broadest possible spectrum
of patients with this disease.
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