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bifurcated muscle stem cell populations
Andrea J. De Micheli1,2, Jason A. Spector1,3, Olivier Elemento2 and Benjamin D. Cosgrove1*

Abstract

Single-cell RNA-sequencing (scRNA-seq) facilitates the unbiased reconstruction of multicellular tissue systems in
health and disease. Here, we present a curated scRNA-seq dataset of human muscle samples from 10 adult donors
with diverse anatomical locations. We integrated ~ 22,000 single-cell transcriptomes using Scanorama to account
for technical and biological variation and resolved 16 distinct populations of muscle-resident cells using
unsupervised clustering of the data compendium. These cell populations included muscle stem/progenitor cells
(MuSCs), which bifurcated into discrete “quiescent” and “early-activated” MuSC subpopulations. Differential
expression analysis identified transcriptional profiles altered in the activated MuSCs including genes associated with
aging, obesity, diabetes, and impaired muscle regeneration, as well as long non-coding RNAs previously
undescribed in human myogenic cells. Further, we modeled ligand-receptor cell-communication interactions and
observed enrichment of the TWEAK-FN14 pathway in activated MuSCs, a characteristic signature of muscle wasting
diseases. In contrast, the quiescent MuSCs have enhanced expression of the EGFR receptor, a recognized human
MuSC marker. This work provides a new benchmark reference resource to examine human muscle tissue
heterogeneity and identify potential targets in MuSC diversity and dysregulation in disease contexts.

Introduction
Skeletal muscles are essential to daily functions such as
locomotion, respiration, and metabolism. Upon damage,
resident muscle stem cells (MuSCs) repair the tissue in
coordination with supporting non-myogenic cell types
such as immune cells, fibroblasts, and endothelial cells [1].
However, with age and disease, the repair capacity of
MuSCs declines, leading to complications such as fibrotic
scarring, reduced muscle mass and strength [2, 3], fat
accumulation, and decreased insulin sensitivity [4], all of
which severely affect mobility and quality of life [5].
Human MuSCs are defined by the expression of the

paired box family transcription factor PAX7 and can be
isolated using various surface marker proteins including

β1-integrin (CD29), NCAM (CD56), EGFR, and CD82 to
varying purities [6–10]. With aging, human MuSCs
exhibit a heterogeneous expression of the senescence
marker p16Ink4a and accumulate other cell-intrinsic
alterations in myogenic gene expression programs, cell
cycle control, and metabolic regulation [2, 11]. However,
given their varied molecular and functional states, our
understanding of MuSCs in adult human muscle tissue
remains incompletely defined. In addition, cellular coordin-
ation in the regulation of human muscle homeostasis and
regeneration remains poorly understood due to the lack of
experimentally tractable models with multiple human
muscle cell types. Given these challenges, we posited that
an unbiased single-cell reference atlas of skeletal muscle
could provide a useful framework to explore MuSC vari-
ability and communication in adult humans.
Here, we deeply profiled the transcriptome of thou-

sands of individual MuSCs and muscle-resident cells
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from diverse adult human muscle samples using single-
cell RNA-sequencing (scRNA-seq). After integrating
these donor datasets to conserve biological information
and overcome technical variation, we resolved two
subpopulations of MuSCs with distinct gene expression
signatures. Using differential gene expression analysis
and ligand-receptor interaction modeling, we extend the
known repertoire of human MuSC gene expression
programs, suggesting new regulatory programs that may
be associated with human MuSC activation, as well as
features of human muscle aging and disease.

Results
Collection and integration of a diverse human scRNA-seq
dataset
We used scRNA-seq to collect and annotate a single-cell
transcriptomic dataset of diverse adult human muscle
samples under homeostatic conditions. The muscle
samples were from surgically discarded tissue from n = 10
donors (range 41 to 81 years old) undergoing reconstruct-
ive procedures and originating from a wide variety of
anatomical sites in otherwise healthy patients (Fig. 1a).
Each sample was ~ 50mg after removal of extraneous fat
and connective tissue. Muscle samples were enzymatically
digested into single-cell suspensions and independently
loaded into the 10X Chromium system. All together, we
collected over 22,000 human muscle single-cell transcrip-
tomes (2206 ± 1961 cells per dataset) into a single data
compendium. Using unsupervised clustering, we resolved
16 types of cells of immune, vascular, and stromal origin,
as well as two distinct subpopulations of MuSCs and some
myofiber myonuclei (Fig. 1b).
Given important differences in anatomical site, donor

health history, age, sex, and surgical procedures, the
muscle samples were highly heterogeneous in terms of
cell-type diversity and underlying gene expression
profiles. Comparing the resulting scRNA-seq datasets is
therefore a challenge that we addressed using recently
developed bioinformatic integration methods [12–14].
Our goal was to assemble a unified dataset of human
muscle tissue that faithfully conserved sources of bio-
logical variability such as donor, anatomical location,
and cell composition heterogeneity, while accounting for
technical biases. We tested four different scRNA-seq
data integration methods (Fig. S1 and S3) and found that
Scanorama [13] followed by scaling the output by regres-
sing against the library chemistry technical variable (“10X
chemistry”) and the number of genes detected per single-
cell best satisfied this goal. Detailed information on our
methodology is provided in Fig. S1. After integrating the
10 datasets, we noted remarkable consistency amid cell
types across donors (Fig. 1c, e), owing to the robustness of
scRNA-seq technology, the bioinformatic method chosen,
and our sample preparation protocol. Differential gene

expression analysis between the 16 distinct subpopulations
identified an extensive set of unique markers that we
grouped into 4 categories (Fig. 1d).

scRNA-seq resolves the cellular diversity of human muscle
and novel markers
We annotated and interpreted the consensus cell atlas
(Fig. 1b, d) into cell type subpopulations as follows. We
identify four types of stromal cells starting with adipocytes
found to be expressing apolipoprotein D (APOD) [15]), the
brown fat tissue adipokine CXCL14 [16], GPX3, and GLUL.
Among the 3 other subpopulations of fibroblast-like cells,
Fibroblast 1 expresses high levels of collagen 1 (COL1A1),
SFRP4, SERPINE1, and CCL2; Fibroblast 2 expresses fibro-
nectin (FBN1), the microfibril-associated glycoprotein
MFAP5, and CD55 known to be expressed by synoviocytes
[17]; and Fibroblast 3 is mainly characterized by SMOC2
identified in tendon fibroblasts [18]. The Fibroblast 3 clus-
ter is similar to the adipocytes cluster though exhibits lower
expression levels and frequencies of the marker genes
APOD, CXCL12, and GLUL, and contain pre-adipocytes.
We also identify 5 types of vascular cells, including 3

endothelial subpopulations, and a subpopulation of peri-
cytes and smooth muscle cells (SMCs). Pericytes and
SMCs express the canonical markers RGS5 and MYH11.
Endothelial 1 express E-selectin (SELE), IL6, ICAM1, and
VCAM1. These genes are upregulated at sites of inflamma-
tion to facilitate immune cell recruitment, suggesting this
Endothelial 1 cell population may be involved in homeo-
static muscle tissue remodeling [19, 20]. Endothelial 2 cells
are distinguished by expressing high levels of claudin-5
(CLDN5), ICAM2, and the chemokine CXCL2. Endothelial
3 expresses high levels of the platelet-recruiting Von Will-
ebrand Factor (VWF) and caveolin-1 (CAV1), a protein
known to regulate cholesterol metabolism, atherosclerosis
progression, and MuSC activation [21, 22]. Endothelial 3
cells are enriched for expression of BTLN9, suggesting they
might represent a lymphatic endothelial phenotype [23].
We also noted two types of myeloid immune cells: first,

tissue-resident and anti-inflammatory macrophages which
express CD74 and histocompatibility complex HLA proteins;
second, activated macrophages and monocytes that express
inflammatory markers such as S100A9 (calgranulin) and
LYZ (lysozyme). Moreover, S100A9 transcript abundance
levels have been shown to be a feature in aging and chronic
inflammation [24]. We also identified a pool of T/B lympho-
cytes and NK cells characterized by IL7R and NKG7, re-
spectively, as well as a small subset of HBA1+ erythroblasts.
Finally, we identified two subpopulations of MuSCs

(henceforth called “MuSC1” and “MuSC2”). MuSC1 highly
expressed the canonical myogenic transcription factor PAX7
[25], as well as chordin-like protein 2 (CHRDL2) and Delta-
like non-canonical Notch ligand 1 (DLK1). CHRDL2 has
been shown previously to be expressed in freshly isolated
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Fig. 1 (See legend on next page.)
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quiescent human MuSCs [7], though its function is still to
be understood. DLK1 is an inhibitor of adipogenesis whose
role in muscle has mainly been recognized in the
embryo but remains controversial in adult muscle re-
generation [26–28]. In contrast to MuSC1, MuSC2
expressed lower levels of PAX7 but maintain expression
of MYF5 (a marker of activated MuSCs) and APOC1
(Fig. 2b). Interestingly, the MuSC2 population also had
elevated expression of two long non-coding RNAs
(lncRNAs), LINC00152, and MIR4435-2HG. LncRNAs
are involved in regulating myogenesis [29]. Surprisingly,
we detected low expression of the myogenic commitment
factors MYOD1 and MYOG (Fig. 2b), in contrast to scRNA-
seq analyses of adult mouse muscle [30, 31]. These observa-
tions suggest that the MuSC1 and MuSC2 populations are
both comprised largely of muscle stem cells, not commit-
ted myogenic progenitors. In addition, we noted that
“Myonuclei” population (Fig. 1b) was enriched for myosin
light chain (MYLFP), skeletal alpha-actin (ATCA1), and
troponin C (TNNC2), proteins involved in muscle con-
traction. This multiple-donor scRNA-seq atlas highlights
the cellular diversity of human muscle tissue and revealed
two distinct MuSC subpopulations along with specific
myogenic expression programs.

Homeostatic human muscle contains two distinct MuSC
subpopulations
We examined genes that were differentially expressed be-
tween the MuSC1 and MuSC2 subpopulations and the bio-
logical processes that characterize them (Fig. 2a, b). The
MuSC1 subpopulation was enriched for PAX7, DLK1, and
CHRDL2, as well as for the cyclin-dependent kinase inhibi-
tor CKDN1C (encoding P57KIP2), suggesting that these cells
are quiescent and not cycling. In addition, this subpopula-
tion expresses the transcription factor BTG2, which was
identified in mouse to be enriched in quiescent MuSCs [30].
We also note that the MuSC1 subpopulation expressed
elevated levels of mitochondrial genes as well as FOS, JUN,
and ERG1. Upregulation of these genes has been shown to
be potential artefacts of the enzymatic digestion during the
sample preparation [32–34].
The MuSC2 subpopulation was enriched for multiple

markers of inflammation including CCL2, CXCL1, IL32, and
surface receptor TNFRSF12/FN14. In particular, CCL2 and
CXCL1 are inflammatory cytokines known to be upregu-
lated in muscle repair, exercise, and fat metabolism [35, 36].

In addition, IL32 has been shown to have inflammatory
properties in human obesity [37] and have a negative impact
on insulin sensitivity and myogenesis [38], while
TNFRSF12/FN14 has been implicated in various muscle
wasting diseases [39, 40] and metabolic dysfunction [41].
Furthermore, the MuSC2 population is enriched for riboso-
mal gene expression (e.g. RPLP1 and RPS6; data not shown),
indicating that these cells may have elevated translational
mechanisms. Lastly, the MuSC1 population has enriched ex-
pression of the myogenic gene PAX7 and, to a lesser extent,
MYF5, compared the MuSC2 population. These observa-
tions suggest that MuSC1 is comprised of quiescent MuSCs,
and MuSC2 is comprised of an early-activated MuSCs.
We performed Ingenuity Pathway Analysis (IPA) to com-

pare biological processes differentially activated between
the MuSC1 and MuSC2 populations. The IPA gene group
“Oxidative Phosphorylation” is enriched in MuSC1 [42],
while “EIF2 Signaling,” associated with protein translation
processes, is enriched in MuSC2 (Fig. 2c). Furthermore,
Gene Set Enrichment Analysis (GSEA) also found MuSC1
to be enriched for “myogenesis,” “muscle cell differenti-
ation,” “hypoxia,” and “response to mechanical stimulus”
gene sets, supporting the observation that these cells are
both less differentiated and may exhibit enhanced tran-
scriptional responses to mechanical disruption due to tissue
dissociation [32–34] (Fig. 2d). MuSC2 cells are enriched for
“ribosome and translational initiation,” “MYC targets,” and
“E2F (cell proliferation),” “G2M checkpoint (cell division),”
and “inflammation” gene sets, further supporting the inter-
pretation that these cells may be in an early activated or
partially differentiated state within an inflammatory envir-
onment (Fig. 2d). Taken together, these observations
suggest that the MuSC1 population is comprised of quies-
cent MuSCs, while the MuSC2 population is comprised of
active, proliferating, and/or dysregulated MuSCs, with
expression alterations associated with inflammation, aging,
and muscle wasting. Differentially expressed genes such as
IL32, CXCL1, CCL2, and TNFRSF12/FN14 may constitute
a marker set for MuSC variation in chronic muscle inflam-
mation in various pathologies.

Ligand-receptor interaction model identifies potential
surface markers and cell-communication channels in
human skeletal muscle homeostasis
We used a ligand-receptor (LR) interaction model and a
database of LR pairs [43] to map cell signaling

(See figure on previous page.)
Fig. 1 Single-cell transcriptomic map of human muscle tissue biopsies. a Metadata (sex, age, anatomical site, and the number of single-cell
transcriptomes after quality control (QC) filtering) from n = 10 donors. Colors indicate sample anatomical sites. b Scanorama-integrated and
batch-effect corrected transcriptomic atlas revealing a consensus description of 16 distinct muscle-tissue cell populations. c Transcriptomic atlas
colored by donor and anatomical location. d Dot-plot showing differentially expressed genes that distinguish the cell populations. Grouped in
four compartments: muscle, endothelial/vascular, stromal, and immune. e Cell type proportions as annotated in (b) across the 10 donors and
grouped by body sections. L, leg (donors 02, 07, 08); T, trunk (donors 01, 05, 06, 09, 10); F, face (donors 03, 04)
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communication channels in human muscle and uncover
differences between MuSC1 and MuSC2 subpopula-
tions (Fig. 3). The model also identifies interacting li-
gand(s) and is restricted to receptor genes differentially
expressed by a specific cell type within the consensus
human muscle cell atlas (Fig. 1b). For each LR pair, the
model calculates an interaction score from differentially

expressed receptors on a given cell population (e.g.,
“MuSC1”) relative to all other population and ligands
expressed by other cell types. The MuSC1 and MuSC2
subpopulations are involved in numerous LR interac-
tions, as both ligand- and receptor-expressing cells (Fig.
3a), though a majority of all LR interaction pairs instead
involve other cell types. This suggests that only a small

Fig. 2 Gene expression and pathway analysis comparison between two MuSC subpopulations. a Volcano plot from comparing transcript levels
between all cells within the “MuSC1” and “MuSC2” subpopulations. Log2 fold-change in normalized gene expression versus −log10 adjusted p value
plotted. Differentially expressed genes (adjusted p value <0.05) are colored dark or light blue (based on their enrichment in MuSC1 or MuSC2,
respectively). Genes with log2 fold-change > 0.75 are labeled. b Normalized expression values of select differentially expressed genes. q values reported
in inset. c Top activated canonical pathways by Ingenuity Pathway Analysis (IPA) based on differentially expressed genes and ranked by p value.
Pathways significantly enriched in either population with |z score| > 1 are indicated in blue. d Select gene ontology (GO) terms and hallmark pathways
enriched between the MuSC subpopulations as identified by gene set enrichment analysis (GSEA) and ranked by enrichment score (ES)
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subset of potential paracrine interactions in human
muscle may include MuSCs.
Given the distinct expression profiles between the

MuSC1 and MuSC2 populations, we sought to identify
genes that could facilitate surface antigen-based separation
of these two human MuSC populations for prospective iso-
lation strategies. We identified surface receptor genes that
were differentially expressed between the MuSC1 and
MuSC2 populations, using a database of 542 human sur-
face “receptor” genes [43] (Fig. 3). MuSC1 exhibit elevated
expression of EGFR, ITGB1, FGFR4, SDC2, as well as the
three tetraspanins CD81, CD82, and CD151(Fig. 3b). EGFR
is a recently established human MuSC marker and is re-
quired for basal-apical asymmetric cell division [7, 10]. The
tetraspanin CD82 is also a recently recognized human
MuSC maker [6], while CD9 and CD81 have been identi-
fied to control muscle myoblast fusion [44]. Furthermore,
Syndecans (SDCs) have been identified in mouse to be het-
erogeneously expressed on MuSCs and myoblasts during
muscle repair [30] and have been shown to form co-
receptor complexes with integrin β1 (ITGB1) and FGFR4
upstream of signaling pathways regulating myogenesis
[45]. Only SDC4 and SDC3 have yet been identified to
mark adult mouse MuSCs [46]. In comparison, the MuSC2
subpopulation has elevated expression of CD44 and
TNFRSF12/FN14 as previously noted (Fig. 3b). The CD44
receptor has been shown to regulate myoblast migration
and fusion in mouse, but also mark MuSCs inosteoarthritis
patients [47, 48].
Next, we focused the LR analysis on the MuSC1 and

MuSC2 populations. We identified 73 and 6 significant LR
interactions for the MuSC1 and MuSC2 populations,
respectively (Fig. 3c). Over one third of all interactions in
the MuSC1 subpopulation involve the EGFR receptor,
which has recently been shown to play a critical role in
directing MuSC asymmetric division in regenerating
muscle [10]. A limited number of EGFR ligands have been
identified in muscle repair, for example, amphiregulin.
(AREG) secreted by Treg cells [49]. According to our model
findings, EGFR may also interact with ligands expressed by
immune cells, such as with TGF-α (TGFA), heparin-biding
EGF (HBEGF), amphiregulin (AREG), and epiregulin

(EREG). Other EGFR ligands include brevican (BCAN), and
betacellulin (BTC) produced by endothelial cells; ECM pro-
teins fibulin 3 (EFEMP1), decorin (DCN), and tenascin C
(TNC) expressed by fibroblasts; and FGF13, AHM, NRG4,
and EGF, expressed by mature skeletal myofibers. We also
detect seven interactions involving NOTCH3 with a variety
of ligands. Notch3 signaling is involved in maintaining
MuSC quiescence, in particular through interaction with
DLL4 [50], which we found differently expressed by endo-
thelial cells along with JAG2. In addition, NOTCH3 also in-
teracts with the ECM protein thrombospondin-2 (THBS2).
Only two receptors, TNFRSF12/FN14 and RPSA, were

found differentially expressed in MuSC2 compared to
other cell types. The first, TNFRSF12/FN14, interacts with
the TWEAK cytokine ligand. While typically recognized to
be expressed by macrophages and other immune cells
[51], our model suggests that TWEAK is also expressed by
the Fibroblast 2 and pericyte cell populations, though not
in a statistically significant manner. The second, RPSA, is
surface ribosomal protein that interacts with laminins
(LAM), a dual-specificity phosphatase 18 (DUSP18), and
prion protein 2 (PRND), which taken together may sug-
gest various pathological processes such as prion diseases
and cancer [52, 53]. Together, this ligand-receptor analysis
identifies a broad set of surface markers that could refine
the molecular definition of human MuSCs and their
subpopulations, as well as candidate cell-communication
channels differentially involved in healthy and diseased
muscle tissues.
Lastly, we performed a comparative analysis of receptor

gene expression between mouse and human MuSCs. We
integrated the human scRNA-seq datasets described in
Fig. 1 and an adult mouse muscle injury-response scRNA-
seq time-course previously reported [30] by converting
mouse genes to their corresponding human ortholog. The
multi-species scRNA-seq atlas was integrated with Sca-
norama and corrected with Harmony (Fig. S2A-B) [54].
From this integrated atlas, we annotated all clusters as in
Fig. 1. We identified two MuSC clusters which both con-
tained cells from both mouse and human samples. We
then performed differential expression analysis between
species comparing aggregated human MuSC1 and MuSC2

(See figure on previous page.)
Fig. 3 Differentially expressed receptors and ligand-receptor interaction between cell populations. a Chord plot of all ligand-receptor (LR)
interactions across cell populations/types within the consensus atlas based on co-expression. Each cell type is color-coded with its receptor genes
more displaced from the perimeter than its ligand genes. All interactions not involving MuSC1 or MuSC2 are presented in gray. b List of
differentially expressed genes between the MuSC1 and MuSC2 subpopulation ranked by log2 fold-change in expression. Positive average values
correspond to genes that are upregulated in MuSC1, whereas negative values are upregulated in MuSC2. Receptors that are statistically significant
(FDR-corrected q value < 0.05) are colored in blue. Receptors that are not statistically significant are in gray. c Heatmap representing row-
normalized (Z-score) LR interaction scores. Rows represent ligand-receptor interaction pairs in the format LIGAND_RECEPTOR, where the receptor is
either differentially expressed in the MuSC1 or MuSC2 populations compared to all the other cell types. Columns identify cell types expressing
the ligand. Asterisks after the pair name also indicate that the ligand is differentially expressed by the other cell type and that interaction is likely
cell-type specific. Red pairs involve the EGFR receptor, purple pairs the NOTCH3 receptor. A positive value indicates that the interaction has a high
score for a particular ligand and cell type compared to other cell types
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cells to mouse MuSCs from the uninjured timepoint (Fig.
S2C). We found that EGFR and CD99 were most differen-
tially expressed by human MuSCs and, conversely, CRLF1
and SDC4 were most enriched in mouse MuSCs. This
findings suggest that mouse and human MuSC exhibit
species-specific receptor expression signatures.

Discussion
Here we present an annotated multi-donor single-cell
RNA sequencing dataset consisting of 22,000 single-cell
transcriptomes from 10 different donors and unique
anatomical sites, some of which difficult to access out-
side of reconstructive surgeries. Our study complements
other recent reports by Rubenstein et al. and Barruet
et al., which collected dissociated whole vastus lateralis
muscles and FACS-sorted MuSC samples mostly from
vastus lateralis muscles, respectively, by providing more
diversity in anatomical sites and donor demographics
[55, 56]. As such, these scRNA-seq data exhibited
notable biological and technical variation, and therefore,
we applied the bioinformatic method Scanorama to assem-
ble an integrated cellular atlas with minimal technical
biases so that we could examine the cellular heterogeneity
across diverse adult human muscle tissue samples. We ob-
served that Scanorama performed more successfully than
other data integration approaches, especially when includ-
ing a scaling regression for sequencing chemistry (Fig. S1
and S3). Notably, even after performing Scanorama with
scaling, we still observed that integrated atlas exhibited bio-
logical (donor) and technical (sequencing chemistry)
biases, but retained some degree of donor-specific cell-type
subpopulations.
We describe the muscle tissue cellular heterogeneity

and provide a comprehensive analysis of differentially
expressed genes for 16 resolved cell subpopulations (Fig.
1), adding to a growing literature documenting human
muscle cell transcriptional diversity [55–57]. Compared
to other studies, the broader variety of muscle tissue
samples combined with the lack of FACS selection
allowed us to identify candidate subpopulations of
muscle fibroblasts and vascular endothelial cells that
may provide unique perspective to human muscle physi-
ology. In particular, we remark that Endothelial 1
expressed DARC/ACKR1, a gene identified in mouse and
human [56, 58] to mark cells of post-capillary venular
origin (Fig. 1d). Rubenstein et al. also found a DARC/
ACKR1+ post-capillary venular endothelial cluster and a
second VWF+ FABP+ cluster, which overlaps with the
Endothelial 2 and 3 clusters reported here. We suggest
that the Endothelial 2 cluster may contain both arterial
and capillary endothelial cells, but could not further par-
tition and classify this cluster. We suggest that the Endo-
thelial 3 cluster may represent lymphatic endothelium

due to its differential expression of BTLN9, a marker of
lymphatic endothelial cells [23].
Most notably, this analysis suggests that human

muscle may contain two distinct MuSC subpopulations
(Fig. 2). This finding contrasts with Rubenstein et al.
which observed a single MuSC (“satellite cell”) popula-
tion from dissociated whole muscle samples and Barruet
et al. which observed ~ 12 clusters from human MuSCs
prospectively enriched by CXCR4+/CD29+/CD56+
FACS. Since cluster distinction depends on both the cel-
lular diversity and sample complexity, it is expected that
variation in study design and methods will yield differing
conclusions regarding sub-population resolution. In this
work, we found a “MuSC1” subpopulation to be largely
comprised of “quiescent” MuSCs, owning to high levels
of PAX7, the mitotic inhibitor CDKN1C, and DLK1.
Interestingly, DLK1 may be an important regulator for
human MuSC maintenance and a marker of healthy tis-
sue given its role in inhibiting adipogenesis [26]. Con-
versely, we identified in the “MuSC2” population
signatures of inflammation and increased fat metabolism
(CCL2 and CXCL1), reduced insulin sensitivity (IL32),
cell cycle (EIF2 Signaling terms), and muscle wasting
(TNFRSF12/FN14), thereby suggesting that these cells
may constitute an “early-activated” and possibly dysfunc-
tional MuSC pool. These markers are consistent with
prior observations that excessive fat accumulation in
muscle can be attributed to obesity, diabetes, and aging
[4]. In addition, we identify two upregulated lncRNAs
that warrant further investigation as candidate non-
coding regulators of myogenesis [29]. Moreover, the
finding of two human MuSC subpopulations mirrors
similar observations made from mouse muscle scRNA-seq
analyses [30, 31] and agrees with the general conceptual
framework that MuSCs transition between quiescent, acti-
vated, and cycling states [1]. Future studies comparative
analysis of these MuSC subpopulations across species may
reveal human-specific aspects of myogenesis.
Ligand-receptor interaction models from scRNA-seq

data can help formulate new hypotheses about cell-
communication channels that regulate muscle function
[30]. Identifying new MuSCs surface receptors will also
help us refine MuSC purification protocols for prospect-
ive isolation studies used for in vitro and transplantation
models. Our LR model revealed a set of 40 surface
receptor genes that are distinctly expressed between
MuSC1 and MuSC2, confirming some prior reports but
also providing new candidate surface antigens for human
MuSC subpopulation fractionation (Fig. 3). For example,
we identify that SDC2 may mark “quiescent” MuSCs
while CD44, TNFRSF12, and RPSA “early-activated”
MuSCs in aging and disease contexts. In addition, our
model proposed 79 cell-communication signals that may
act between MuSCs and other cell types, in particular
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with fibroblasts, myofibers and immune cells through
the EGFR receptor, and with vascular cells through the
NOTCH3 receptor. These interactions may be critical
regulators of muscle homeostasis and should be further
investigated.
This study presents a new set of candidate receptor

expression signatures that may define human MuSC sub-
populations (Fig. 3b) and provide human-specific receptor
patterns (Fig. S2C). This approach is complimentary to re-
ceptor screening approaches, which have previously been
useful to identify EGFR and CD82 as human MuSC
receptor markers for flow cytometry [6, 7, 9]. The
subpopulation-specific receptor genes identified here may
allow for further comparison of molecular and functional
human MuSC diversity across muscle groups [59, 60].
Our study has some limitations. First, the sample size is

small, and donors are very diverse, thus limiting our ability
to control for age and sex. Therefore, we could not exam-
ine cell composition or gene expression trends based on
muscle group, donor sex, or donor age. Even for samples
from the same muscle (e.g., flexor hallucis longus [donors
2 and 7] or external oblique [donors 6 and 9]), we were un-
able to perform these comparions with statistical power.
Further, we performed differential expression and gene set
enrichment analyses within the MuSC1 and MuSC2 popu-
lations between the four middle-age (43–69 years old) and
six aged (70–81 years old) donors, but found few age-
cohort specific differences (data not shown). Second, future
studies should aim at collecting muscle specimens in a
more controlled manner, for example using a Bergström
needle [61, 62] from a unique anatomical site; though this

would not be possible for some muscles presented in this
study. These biopsies would allow for aging and disease
comparative analyses. Indeed, a recent report by Ruben-
stein et al. [56] performed scRNA-seq on four human vas-
tus lateralis muscle biopsies found that myofiber type
composition and gene expression alterations based on
donor age.
Nevertheless, our dataset offers a new transcriptomic

cell reference atlas and computational data integration ap-
proaches as a benchmark resource to examine human
muscle cell diversity in health, aging, and disease.

Methods
Human participation for muscle sample collection
All procedures were approved by the Institutional Review
Board at Weill Cornell Medical College (WCMC IRB
Protocol # 1510016712) and were performed in accordance
with relevant guidelines and regulations. All specimens
were obtained at the New York-Presbyterian/Weill Cornell
campus. All subjects provided written informed consent
prior to participation. Samples were de-identified in
accordance to IRB guidelines, and only details concerning
age, sex, and anatomic origin were included. Sample ana-
tomic locations and donor details are provided in Fig. 1a.

Muscle digestion and single-cell sequencing library
preparation
After collection from donors during surgery, the muscle
samples were cleared from excessive fat and connective
tissue and weighted. About 50–65mg of tissue was then
digested into a single-cell suspension following a previously

Table 1 List of reagents and other resources used in this study

Reagents

Dispase II (neutral protease, grade II) Sigma-Aldrich 04942078001

Collagenase D, from Clostridium histolyticum Sigma-Aldrich 11088866001

Commercial kits

Chromium Single Cell 3' Library & Gel Bead Kit v2 10X Genomics CG00052 (protocol)

Chromium Single Cell 3' Library & Gel Bead Kit v3 10X Genomics CG000183 (protocol)

Deposited data

Human ligand-receptor database [43] https://www.ncbi.nlm.nih.gov/pubmed/26198319

Human scRNA-seq dataset This paper GSE143704

Mouse scRNA-seq dataset [29] GSE143437

Software packages and algorithms

Cell Ranger 3.1.0 (July 24, 2019) 10X Genomics https://support.10xgenomics.com/single-cell-gene-expression/software/
downloads/latest

Seurat 3.1.0 [14] https://github.com/satijalab/seurat

Scanorama (online version as of 2019-11-19) [13] https://github.com/brianhie/scanorama

Harmony (online version as of 2019-11-19) [54] https://github.com/immunogenomics/harmony

biomaRt 2.43.1 (online version as of 2020-01-08) [64] https://bioconductor.org/packages/release/bioc/html/biomaRt.html

Gene Set Enrichment Analysis (4.0.3) [65] http://software.broadinstitute.org/gsea/index.jsp

Ingenuity Pathway Analysis (IPA, 2019-08-30) QIAGEN https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
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reported protocol [63]. Briefly, the specimen was digested
in 8mg/mL Collagenase D (Roche) and 4.8 U/mL Dispase
II (Roche) for 1 h followed by manual dissociation, filtra-
tion, and red blood cell lysis (Table 1). All single-cell sus-
pensions were then frozen at -80 °C in 90% FBS, 10%
DMSO and were re-filtered after thawing and prior to gen-
erating scRNA-seq libraries. The sequencing libraries were
prepared using the Chromium Single Cell 3' reagent V2 or
V3 kit (10X Genomics) in accordance with the manufac-
turer’s protocol and diluted as to yield a recovery of ~ 6000
single-cell transcriptomes with < 5% doublet rate (Table 1).
The libraries were sequenced in multiplex (n = 2 per se-
quencing run) on the NextSeq 500 sequencer (Illumina) to
produce between 200 and 250 million reads per library.

Single-cell data analysis
Sequencing reads were processed with the Cell Ranger
version 3.1 (10X Genomics) using the human reference
transcriptome GRCh38. The downstream analysis was
carried out with R 3.6.1 (2019-07-05). Quality control
filtering, data clustering, visualization, and differential
gene expression analysis was carried out using Seurat
3.1.0 R package [14]. Each of the 10 datasets was first
analyzed and annotated independently before integration
with Scanorama [13] (Table 1). Filtering retained cells
with > 1000 unique molecular identifiers (UMIs), < 20%
UMIs mapped to mitochondrial genes, and genes
expressed in at least 3 cells (Fig. S4). Unsupervised
shared nearest neighbor (SNN) clustering was performed
with a resolution of 0.4 following which clusters were
annotated with a common nomenclature of 12 cell type
terms (Fig. S1). Differential expression analysis was
achieved using either Seurat’s “FindAllMarkers” (Fig. 1d)
or “FindMarkers” (Fig. 2a) function using a Wilcoxon
Rank Sum test and only considering genes with >
log2(0.25) fold-change and expressed in at least 25% of
cells in the cluster. P values were corrected for false-
discovery (FDR) and then reported as q values. Integration
of raw counts was achieved using the “scanorama.correct”
function from Scanorama. The integrated values were fi-
nally scaled in Seurat regressing out the 10X chemistry
type and the number of genes per cell. Visualization was
done using uniform manifold approximation and projec-
tion (UMAP) [66]. In Fig. S2, we integrated these human
scRNA-seq datasets with a cohort of adult mouse muscle
scRNA-seq datasets collected 0–7 days post-notexin injury
[30]. For multi-species integration, scRNA-seq datasets
were integrated using first Scanorama and then Harmony
[54] to align related cell populations across species. Mouse
genes were converted to human orthologs using biomaRt
Bioconductor R package [64] (Table 1). For differential ex-
pression analysis between human and mouse samples, we
compared human MuSCs (combining MuSC1 + 2 clusters)

and the uninjured mouse MuSCs to focus on cells from
the homeostatic conditions.

Pathway and gene set enrichment analysis
The list of differentially expressed genes between
MuSC1 and MuSC2 (Fig. 2a) was used in Ingenuity
Pathway Analysis (IPA) (QIAGEN, 2019-08-30). Acti-
vated (canonical) pathways were calculated by “Core
Analysis” setting a q value cutoff of 0.05, which yielded
964 genes (366 down, 598 up). Top canonical pathways
were chosen based of − log(p value) and z score values.
Gene set enrichment analysis (GSEA, v.4.0.3) [65] was
ran on the same gene list as IPA ranked by log2 fold-
change and with default program settings (Table 1).
Gene sets database used the following: h.all.v7.0.sym-
bols.gmt, c2.all.v7.0.symbols.gmt, c5.all.v7.0.sym-
bols.gmt (Broad Institute). Gene sets enriched in
phenotype were selected based on q value and enrich-
ment score (ES).

Ligand-receptor cell communication model
The model aims at scoring potential ligand-receptor
interactions between MuSCs (receptor) and other cell
types (ligand). We used the ligand-receptor interaction
database from Ramilowski et al. [43] (Table 1). From the
database, we considered 1915 ligand-receptor pairs
(from 542 receptors and 518 ligands) to test for differen-
tial expression in our scRNA-seq dataset. To calculate
the score for a given ligand-receptor pair, we multiply
the average receptor expression in MuSCs by the aver-
age ligand expression per other cell type. We only con-
sidered receptors that are differentially expressed in
either the MuSC1 or MuSC2 subpopulation when com-
pared individually to all other cell types.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13395-020-00236-3.

Additional file 1: Figure S1. Comparison of scRNA-seq integration
and batch correction methods. We compared four scRNA-seq data in-
tegration methods to evaluate which most faithfully conserves donor,
anatomical, and biological information while minimizes technical biases.
(A) The n = 10 donor datasets were first annotated independently using
a nomenclature of 12 common cell type terms following unsupervised
SNN clustering. Then we evaluated the integration method by UMAP and
by coloring the data either by cell type, donor ID, or 10X library chemistry
used. First, we integrated the data by merging the individually normalized
gene expression matrices without any further correction. We saw strong
technical biases that overwhelmed biological information as the different
cell populations segregate by sample/donor and chemistry type. For in-
stance, the two MuSC and progenitor subpopulations are grouped with
fibroblasts and endothelial cells. Second, we tested the Seurat SCT inte-
gration method [14] . This method first calculates a cross-correlation sub-
space from genes that are shared between datasets. We noticed that this
method better “aligns” donor and chemistry type but at the expense of
masking biological variability. For instance, we observed that the two
MuSC and four stromal subpopulations (Fibroblast 1,2,3 and Adipocytes)
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were grouped together, hiding important biological heterogeneity. Al-
though certainly useful to validate reproducibility in scRNA-seq experi-
ments, the Seurat SCT integration approach overcorrected biological
heterogeneity for heterogeneous samples. Third, we tested the Scanor-
ama method [13], which relies on a computer vision algorithm that
“stitches” datasets together even when the cell type composition be-
tween dataset is considerably different. We see that this method groups
similar cell populations together while acknowledging donor differences.
Yet, surprisingly, this method is also very sensitive at picking up differ-
ences in chemistry. To correct this chemistry effect, we scaled the Scanor-
ama output by regressing out the chemistry and the number of genes
detected per cell (significantly different between chemistry type) (B).
Using this integration method, we observed clear separation of the inde-
pendently annotated cell populations. We present the resulting
Scanorama-integrated dataset as a “consensus atlas” (see Fig. 1b-c) of hu-
man muscle that describes donor-to-donor differences while grouping
cells that are similar together and removing technical biases. Figure S2.
Integration of human and mouse scRNA-seq data sets allows com-
parison of MuSC receptor gene expression across species. We gen-
erated an integrated scRNA-seq atlas including human sample datasets
from Fig. 1 and an adult mouse muscle regeneration time-course from
De Micheli et al. [29]. These datasets were integrated using first Scanor-
ama and then Harmony for alignment across species. (A) Multi-species in-
tegrated atlas presented by UMAP plot a colored by sample type. (B)
Multi-species integrated atlas presented by UMAP plot and annotated by
cell-type clusters. (C) The human MuSC1 and MuSC2 clusters were
grouped into a cumulative human MuSC cell population, which was
compared to mouse MuSCs from the uninjured samples only. Receptor
genes were analyzed between the mouse and human MuSC cells for dif-
ferential expression. Differentially expressed genes with an FDR-corrected
q-value < 0.05 are shown in (C). Figure S3. Composition of single-cell
reference atlas as a whole and in cell-type clusters by donor. (A)
Visualization of donor (n = 10) contributions to the whole single-cell ref-
erence atlas. In each panel, the full atlas is presented as a UMAP plot,
with the cells for an individual donor are colored and overlaid on cells
from all other donors (in gray). Note the total number of cells assayed dif-
fers for each donor (see Fig. 1a). (B) Bar plot representing the relative
contribution of cells with each cell type cluster from each donor. Note
that the MuSC1 and MuSC2 clusters are also plotted as a combined clus-
ter on the left side of the bar plot for reference. Figure S4. Transcrip-
tomic detection variation within human muscle reference atlas.
UMAP plots featuring (left) the number of unique molecular identifiers
(UMIs) and (right) number of genes detected per single cell. Note that QC
filtering removed all cells with less than 1000 UMIs (see Methods).
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