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Abstract

Duchenne muscular dystrophy (DMD) is a genetic disease evoked by a mutation in the dystrophin gene. It is associated
with progressive muscle degeneration and increased inflammation. Up to this date, mainly anti-inflammatory treatment is
available for patients suffering from DMD. miR-146a is known to diminish inflammation and fibrosis in different tissues by
downregulating the expression of proinflammatory cytokines. However, its role in DMD has not been studied so far.
In our work, we have generated mice globally lacking both dystrophin and miR-146a (miR-146a−/−mdx) and examined
them together with wild-type, single miR-146a knockout and dystrophic (mdx—lacking dystrophin) mice in a variety of
aspects associated with DMD pathophysiology (muscle degeneration, inflammatory reaction, muscle satellite cells, muscle
regeneration, and fibrosis).
We have shown that miR-146a level is increased in dystrophic muscles in comparison to wild-type mice. Its deficiency
augments the expression of proinflammatory cytokines (IL-1β, CCL2, TNFα). However, muscle degeneration was not
significantly worsened in mdx mice lacking miR-146a up to 24weeks of age, although some aggravation of muscle
damage and inflammation was evident in 12-week-old animals, though no effect of miR-146a deficiency was visible on
quantity, proliferation, and in vitro differentiation of muscle satellite cells isolated from miR-146a−/−mdx mice vs. mdx.
Similarly, muscle regeneration and collagen deposition were not changed by miR-146a deficiency. Nevertheless, the lack
of miR-146a is associated with decreased Vegfa and increased Tgfb1.
Overall, the lack of miR-146a did not aggravate significantly the dystrophic conditions in mdx mice, but its effect on DMD
in more severe conditions warrants further investigation.
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Background
Duchenne muscular dystrophy (DMD) is an X chromo-
some-associated monogenic disease, caused by muta-
tions in a gene encoding dystrophin, leading to the lack
of functional protein [1, 2]. Dystrophin is the major
intracellular part of the dystrophin-glycoprotein com-
plex, which links extracellular matrix through sarco-
lemma to multiple cytoskeletal proteins, ensuring signal
transduction and mechanical stability of myofibres dur-
ing contraction [3–5].
Although in healthy skeletal muscle dystrophin consti-

tutes only 0.002% of total protein mass [6], its deficiency

causes detrimental effects. The damage of sarcolemma
followed by the degeneration of muscle fibres are the
primary results of the lack of dystrophin [5, 7]. Injuries
occur especially during contraction, due to the changes
in the localisation of membrane proteins which lead to
the increased mechanical vulnerability and permeability
of the sarcolemma [7, 8]. As a result, degenerating myo-
fibres accumulate immunoglobulins IgG and IgM [8],
whereas during the necrosis, they release proteins (e.g.
lactate dehydrogenase (LDH) and creatine kinase (CK))
that can be found afterwards in the plasma [1, 9, 10].
Consequently, massive inflammation and leukocyte infil-
tration of the tissue take place [5, 7, 11], amplifying
sarcolemma damage of dystrophic myofibres [12].
Neutrophils and phagocytic macrophages of pro-inflam-
matory M1 phenotype start to invade dystrophic skeletal
muscle, subsequently accompanied by pro-regenerative
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and anti-inflammatory M2 subpopulation [12, 13]. Per-
sistent membrane instability and proinflammatory cyto-
kines induce the expression of major histocompatibility
complex (MHC I and II) on muscle cells, and afterwards
recruitment of Th and Tc lymphocytes, that further con-
tribute to muscle damage [11, 14] also by secretion of
tumour necrosis factor-α (TNFα) and interferon-γ
(IFNγ) cytokines that induce proinflammatory pheno-
type in macrophages [13–15]. Treg lymphocytes are also
elevated in dystrophic muscles; however, by secretion of
immunosuppressive IL-10 and reduction of IFNγ expres-
sion by Th lymphocytes, they play there an anti-inflam-
matory role [11, 16].
In response to the repetitive primary and secondary

damage of muscle tissue, the process of muscle regener-
ation is induced [5, 7]. It is strictly dependent on the
muscle satellite cells (SCs)—progenitors of skeletal
muscle tissue that became activated upon injury and give
rise to myoblasts [17, 18]. The muscle recovery is con-
trolled by a group of muscle regulatory transcription
factors (MRFs, including among them myoblast deter-
mination protein 1–MyoD and myogenin) and
muscle-specific microRNAs (miRNAs, so-called myo-
mirs, miR-1, miR-133a/b, and miR-206) [17, 18].
Myoblasts differentiate, fuse to each other, and de-
velop into myofibres, upregulating the expression of
proteins characteristic for regenerating (e.g. embryonic
myosin, eMHC/Myh3) and mature (e.g. myosin heavy
chain, MyHC) myofibres [17–19]. Until recently, dys-
trophin was thought to be one of these proteins,
expressed only in myotubes and myofibres, but its
presence was, in fact, confirmed already in SCs [20].
Its lack in SCs of dystrophic muscles results in the
impaired polarity of SCs, loss of asymmetric division,
reduced generation of myogenic progenitors, and fi-
nally impaired muscle regeneration [20].
Abnormal regeneration which cannot effectively com-

pensate chronic muscle degeneration, together with the
persistent inflammatory infiltration, lead in dystrophic
muscles to excessive deposition of extracellular matrix
(ECM) proteins, in the process called fibrosis [21, 22].
When properly controlled, it is necessary to provide a
scaffold for the correct structure of newly formed
muscle tissue and to ensure proper transmembrane sig-
nalling [21, 22]. However, during dystrophy progression,
fibroblasts and myofibroblasts, generated from fibro-
adipogenic progenitors (FAPs), produce high levels of
proteins like collagens and fibronectin in response to el-
evated transforming growth factor-β (TGF-β) expression
[21, 23]. Abnormal accumulation of connective tissue
within skeletal muscles perturbs the microenvironment
of the injured tissue, diminishes the access to nutrients,
and limits the availability of target muscle cells for the
treatment [21].

Multiple rounds of degeneration-regeneration events
occurring with increasing age, accompanied by elevated
inflammatory reaction and fibrosis lead ultimately to the
poor repair response and the loss of muscle function
[7, 11, 21]. This, in turn, results in premature death,
often due to respiratory or cardiac failure [24]. Since
the current search for an ultimate treatment for the
disease is unsuccessful, reduction of deleterious secondary
effects, leading to improvement of lifespan and life quality,
are the main field of research [7, 24, 25].
We have recently shown that one of microRNAs,

namely miR-146a, is constantly upregulated in mdx
mice—a murine model of DMD [9]. Research done in
different tissues show that miR-146a negatively regulates
inflammation, by inhibiting activators of NF-κB path-
way—interleukin-1 receptor-associated kinase 1 (IRAK1)
and TNF receptor-associated factor 6 (TRAF6) [26–29].
In this manner, miR-146a leads to the decreased produc-
tion of proinflammatory cytokines [30–34] and affects
macrophage-dependent inflammatory response [30, 35],
as well as activity of NK cells [33, 34] and T cells
[29, 36–38]. Moreover, miR-146a was proved to in-
hibit skeletal [39] and cardiac [40] muscle fibrosis acting
as a negative regulator of TGF-β signalling pathway [39].
Finally, miR-146a is upregulated in murine myoblasts
which present decreased differentiation due to heme oxy-
genase-1 overexpression [41]. In the same cell line, miR-
146a was shown to intensify proliferation and reduce dif-
ferentiation by affecting Numb [42], an inhibitor of a
Notch signalling pathway, which regulates postnatal myo-
genesis [43, 44].
Despite these known properties of miR-146a, suggest-

ing it as a potential target of anti-dystrophic therapies,
its role in muscular dystrophy has not been addressed so
far. In the current study, we have therefore investigated
what is the effect of global miR-146a deficiency in mdx
mice.

Methods
Animal models
All animal procedures and experiments were performed
in accordance with national and European legislation,
after approval by the 1st Local Ethical Committee on
Animal Testing (approval number: 66/2013). Animals
were kept in specific-pathogen-free standard conditions
with water and food available ad libitum.
Mdx mice C57BL/10ScSn-Dmdmdx/J and control mice

C57BL/10ScSnJ (WT), as well as miR-146−/− B6(FVB)-
Mir146tm1.1Bal/J mice, were purchased from the Jackson
Laboratory. To generate miR-146a−/−mdx (mice
deficient for both miR-146a and dystrophin), homozy-
gous miR-146a−/− male mice were bred to homozygous
Dmdmdx/mdx female mice, to generate miR-
146a+/−Dmdmdx/+ female mice or miR-146a+/−Dmdmdx/Y
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male mice, which were bred together to obtain miR-
146a−/−mdx mice at mixed background C57BL/10ScSn
and B6(FVB) (F3). As controls, miR-146a+/+Dmd+/Y

(WT), miR-146a+/+Dmdmdx/Y (mdx), miR-
146a−/−Dmd+/Y (miR-146a−/−) at mixed background
were used (F3 generation). The crossing of mice to gen-
erate double knockouts was hence done accordingly to
other studies in which mdx mice were crossed with rele-
vant knockouts [9, 45–50]. 10- to 12-week-old male
littermates or age-matched mice were used for the ana-
lysis. For experiment analysing the effect of miR-146a
deficiency in older animals, 24-week-old mice were used.
Genotyping of animals was performed by PCR on the
DNA isolated from the tails.

Histological analysis
Gastrocnemius muscles (GM) were placed in 10% forma-
lin for 48 h or preserved in OCT freezing medium, in
isopentane cooled in a bath of liquid nitrogen. Four-
micrometre-thick sections or 10-μm-thick sections were
cut from each paraffin-embedded tissue and frozen mus-
cles, respectively, with the muscle fibres oriented in a
transverse direction. Muscle sections were subjected to
haematoxylin and eosin (HE) or Masson’s trichrome
staining, accordingly to published protocols [51]. Inflam-
mation, regeneration, and fibrosis were based on the
previously described arbitrary scale [51].

Plasma CK and LDH measurement
Plasma was obtained from the blood collected from
the vena cava just before terminal procedure and
muscles harvesting. The activity of CK and LDH was
measured using diagnostic Liquick Cor-CK and
Liquick Cor-LDH kit, respectively (P.Z. CORMAY), as
previously described [9, 51].

Immunohistofluorescent (IHF) stainings
GM was snap-frozen in tissue freezing compound
(OCT) in pre-chilled isopentane bath cooled with liquid
nitrogen. Frozen tissues were cryosectioned (10 μm)
using cryostat (Leica).
Necrotic fibres (accumulating IgG and IgM) or re-

generating fibres (positive for embryonic myosin
chain, eMHC) were stained on cryosections. Muscle
frozen sections were blocked with 10% goat serum
(Sigma-Aldrich), 5% bovine serum albumin (BioShop),
and with M.O.M.™ (Mouse On Mouse Ig blocking
reagent, Vector Laboratories) for 1 h at room
temperature. Afterwards, sections were incubated with
rat anti-mouse laminin 2α primary antibody (1:500;
4H8-2, Abcam), mouse anti-mouse eMHC primary
antibody (1:100, F1.562, DSHB) for 1 h at 37 °C, followed by
three washes with PBS (5min each) and 1-h-incubation
with goat anti-rat AlexaFluor568 (1:1000, A-11077, Thermo

Fisher Scientific), goat anti-mouse AlexaFluor488 (1:500,
A11008, Thermo Fisher Scientific), and goat anti-mouse
IgG/IgM/IgA-AlexaFluor488 (1:50, A-10667, Thermo
Fisher Scientific). Finally, sections were washed with
PBS, counterstained with Hoechst 33258 (10 μg/ml,
Sigma-Aldrich), and covered with fluorescence
mounting medium (Dako). The percentage of necrotic
fibres or regenerating fibres was assessed among the
total myofibre number.
Dystrophin expression was checked on frozen cryosec-

tions fixed by ice-cold acetone. Sections were blocked
with 10% goat serum and 3% bovine serum albumin for
1 h; primary rabbit anti-mouse dystrophin (1:100;
ab15277, Abcam) was applied overnight followed by
three washes with PBS and 1-h-incubation with donkey
anti-rabbit AlexaFluor488 (1:500, A21206, Thermo
Fisher Scientific). Finally, sections were washed with
PBS, counterstained with Hoechst 33258 (10 μg/ml), and
covered with fluorescence mounting medium.
For Pax7, staining sections were fixed for 20 min in 4%

paraformaldehyde (Santa Cruz) and followed the one
wash with PBS and fixed and permeabilised with cold
methanol (POCH S.A.) for 6 min at − 20 °C. Then, after
two washes with PBS, retrieval of antigens was per-
formed in the citric buffer. After two washes with PBS,
samples were blocked in 2.5% bovine serum albumin
for 30 min and M.O.M.™ for the next 30 min. After
two washes with PBS, primary antibodies against Pax7
(1:100, Pax7-c, DSHB) and laminin 2α (1:1000, L9393,
Sigma-Aldrich) were applied overnight at 4 °C in 0.1%
BSA. After two washes with PBS (5 min each), the
sections were incubated with secondary goat anti-
mouse AlexaFluor488 (1:500, A11008, Thermo Fisher
Scientific) and goat anti-rabbit AlexaFluor568 (1:500,
A-11077, Thermo Fisher Scientific) for 30 min at
room temperature in 0.1% BSA antibodies. Finally,
sections were washed with PBS, counterstained with
Hoechst 33258 (10 μg/ml), and covered with fluores-
cence mounting medium. The ratio of Pax7+ cells/
myofibre was assessed among the total myofibre num-
ber, and at least 8 fields of view were analysed.

Analysis of mononucleated cells populations in skeletal
muscles by flow cytometry
Cells for flow cytometry were prepared as previously de-
scribed [9, 51]. Briefly, hind limb muscles were pooled,
minced, and digested with 5 mg/ml Collagenase IV
(Gibco; Invitrogen) and 1.2 U/ml Dispase (Gibco; Invi-
trogen) at 37 °C. The cell suspension was filtered
through a 100-μm cell strainer, and cells were pelleted
after centrifugation.
For cytometric analysis of SCs, pelleted cells after skel-

etal muscle digestion were resuspended in PBS + 2% fetal
bovine serum (FBS) and then incubated for 30 min on
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ice with rat anti-mouse α7integrin-PE (1:15, 334,908,
R&D Systems), rat anti-mouse CD34-AlexaFluor700
(1:30, RAM34, eBioscience), rat anti-mouse CD45-
APC-eFluor780 (1:30, 30-F11, eBioscience), rat anti-
mouse CD31-PE (1:30, MEC13.3, BD Biosciences),
and rat anti-mouse Sca-1-PE-Cy7 (1:30, D7,
eBioscience) to assess CD45−CD31−Sca1−α7inte-
grin+CD34+ and CD45−CD31−Sca1−α7integrin+CD34−

SCs [9, 51]. For intracellular protein detection, cell
fixation and permeabilisation was done with BD
IntraSure™ Kit (BD Biosciences) according to the ven-
dor’s protocol. Primary rabbit polyclonal anti-mouse
Numb (1:200, C29G11, Cell Signalling) and appropri-
ate goat anti-rabbit AlexaFluor488 secondary antibody
(1:400, A11008, Thermo Fisher Scientific) were used.
A negative control without primary antibody was
prepared. Cell cycle phases were determined based on
Hoechst 33342 staining (10 μg/ml). The stained cells
were analysed using Fortessa flow cytometer (BD
Biosciences), with FACSDiva (BD Biosciences).
For cytometric analysis of macrophage, monocyte, and

granulocyte populations, pelleted cells after skeletal
muscle digestion were resuspended in PBS + 2% FBS and
then incubated with the following antibodies for 30 min
on ice: rat anti-mouse CD45-APC-eFluor780 (1:30, 30-
F11, eBioscience), rat anti-mouse F4/80-APC (1:30,
BM8, eBioscience), rat anti-mouse MHCII-PE-Cy7 (1:30,
M5/114.15.2, BD Bioscience), rat anti-mouse 11b-PE
(1:30, M1/70, eBioscience), rat anti-mouse CD206-
PerCP/Cy5.5 (1:30, C0682C2, BioLegend), rat anti-mouse
Ly6C-AlexaFluor488 (1:30, HK1.4, BD Biosciences), and
rat anti-mouse Ly6G-PE (1:30, 1A8, BioLegend). Cells
were fixed with BD IntraSure™ Kit.
For cytometric analysis of NK and lymphocyte popula-

tions, cells pelleted after skeletal muscle digestion were
resuspended in PBS + 2% FBS and then incubated
with the following antibodies for 30 min on ice: rat
anti-mouse CD45-APC-eFluor780 (1:30, 30-F11,
eBioscience), hamster anti-mouse CD3e-PE-Cy7 (1:30,
145-2C11, eBioscience), mouse anti-mouse NK1.1-
FITC (1:30, PK136, BioLegend), rat anti-mouse CD4-
PerCP-Cyanine 5.5 (1:30, RM4-5, BD Biosciences), rat
anti-mouse CD8a-AlexaFluor700 (1:30, 53-6.7, BioLe-
gend), and rat anti-mouse CD25-PE (1:30, PC61, BD
Biosciences). After fixation and permeabilisation, rat
anti-mouse FoxP3-APC (1:30; FJK-16 s, eBioscience)
was applied.
Before the flow cytometry analysis, all cells were add-

itionally stained with Hoechst 33342 (10 μg/ml).

Isolation of SCs by fluorescence-activated cell sorting
(FACS)
For isolation of SCs by FACS sorting, skeletal muscles
from hind limbs were prepared similarly as for flow

cytometry analysis, resuspended in PBS + 2% FBS, and
then incubated with the following antibodies for 30 min
on ice: rat anti-mouse α7integrin-APC (1:15, 334,908,
R&D Systems), rat anti-mouse CD34-FITC (1:30,
RAM34, eBioscience), rat anti-mouse CD45-PE (1:30,
30-F11, BD Biosciences), rat anti-mouse CD31-PE (1:30,
MEC13.3, BD Biosciences), and rat anti-mouse Sca-1-
PE-Cy7 (1:30, D7, eBioscience). After incubation, cells
were washed, filtered through a 40-μm cell strainer, and
resuspended in PBS + 2% FBS with Hoechst 33342
(10 μg/ml) and 7-AAD (1:40, BD Biosciences). Cells were
sorted with MoFlo XDP (Beckman Coulter) cell sorter.

SCs cell culture, proliferation, and differentiation
Cell culture, analysis of in vitro proliferation by 5-ethy-
nyl-2′-deoxyuridine incorporation (EdU, 5-ethynyl-2′-
deoxyuridine, Thermo Fisher Scientific), in vitro
differentiation, and immunocytochemical fluorescent
staining (ICC-F) for myosin-heavy chain (MyHC) were
performed as previously described [9, 51]. The fusion
index was defined as a percentage of nuclei within myo-
tubes (≥ 3 nuclei) related to the total number of nuclei.

Total RNA isolation and qRT-PCR
Total RNA isolation from GM and qRT-PCR for both
mRNAs and miRNAs were performed as previously
described [9, 51]. The primers recognising mouse I1b
(5′- CCGACAGCACGAGGCTTT-3′; 5′- CTGGTGTG
TGACGTTCCCATT-3′), Ccl2 (5′-CCCAATGAGTAG
GCTGGAGA-3′; 5′-TCTGGACCCATTCCTTCTTG-
3′), Tnf (5′-ACGTCGTAGCAAACCACC-3′; 5′-TAGC
AAATCGGCTGACGGT-3′), Myod1 (5′-GCTGCCTT
CTACGCACCTG-3′; 5′-GCCGCTGTAATCCATCAT
GC-3′), Myog (5′-CAGTACATTGAGCGCCTACAG-3′;
5′-GGACCGAACTCCAGTGCAT-3′), Myh3 (5′- TCT
AGCCGGATGGTGGTCC-3′; 5′-GATTGTAGGAGC
CACGAAA-3′), Col1a1 (5′-CGATCCAGTACTCTCC
GCTCTTCC-3′; 5′-ACTACCGGGCCGATGATGCTA
ACG-3′), Tgfb1 (5′-CGCAACAACGCCATCTATGAG-
3′; 5′- TTCCGTCTCCTTGGTTCAGC-3′), Vegfa (5′-
ATGCGGATCAAACCTCACCAA-3′; 5′-TTAACTCA
AGCTGCCTCGCCT-3′), Mmp9 (5′-TGTGGATGTT
TTTGATGCTATT-3′; 5′-CGGAGTCCAGCGTTGCA-
3′), and Eef2 for normalisation (elongation factor 2) (5′-
AGAACATATTATTGCTGGCG-3′; 5′-CAACAGGGT
CAGATTTCTTG-3′) were used. Forward primers
recognising muscle-specific murine miRNAs miR-206
(5′-TGGAATGTAAGGAAGTGTGTGG-3′), miR-146a
(5′-CGTGAGAACTGAATTCCATGGGTT-3′), miR-
133a (5′-TTGGTCCCCTTCAACCAGCTGT-3′), and
miR-1 (5′-GCTGGAATGTAAAGAAG TATGTAT-3′)
were used. Universal reverse primer for miRNAs’ quanti-
tative RT-PCR was supplied by a vendor. Gene
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expression was normalised to a constitutive small RNA
U6 (5′-CGCAAGGATGACACGCAAATTC-3′).

Protein analysis
To assess vascular endothelial growth factor A (VEGF)
protein level in gastrocnemius lysate, the Luminex™ plat-
form was used. VEGF was measured according to the
manufacturer’s instructions (Life Technologies) and the
results were calculated as pg/mg of total protein.

Statistics
Data are presented as mean ± SEM. Differences between
groups were tested for statistical significance using the
unpaired two-tailed Student’s t test. p ≤ 0.05 was consid-
ered significant. Grubb’s test was used to identify signifi-
cant outliers.

Results
miR-146a is elevated in dystrophic muscles and its lack
increases expression of proinflammatory genes
To confirm the miR-146a deficiency of miR-146a−/−mdx
mice generated in our lab, qRT-PCR was performed
(Fig. 1a). miR-146a−/− and miR-146a−/−mdx animals lack
the expression of miR-146a (Fig. 1a). Similarly, their dys-
trophic phenotype was verified and both mdx and miR-
146a−/−mdx did not express dystrophin protein (Fig. 1b).
Additionally, we have analysed the expression of genes
that were reported previously to be affected on mRNA

level by miR-146a [30, 31, 33, 52]. Accordingly, in-
creased mRNA level of proinflammatory cytokines such
as Il1b, Ccl2, and Tnf was found in miR-146a-deficient
muscles (Fig. 1c).

miR-146a deficiency does not significantly aggravate
muscle degeneration and inflammatory reaction in
dystrophic muscles
Degeneration of skeletal muscle was measured basing on
markers released to blood (Fig. 2a) and determination of
the percentage of necrotic fibres (Fig. 2b). No statistically
significant differences were detected in LDH activity, as
well as in the level of necrosis in GM of dystrophic mice
lacking additionally miR-146a in comparison to mdx an-
imals (Fig. 2a, b). However, stronger muscle damage can
be noted in dystrophic muscles in the absence of miR-
146a, as evidenced by an increase in CK (Fig. 2a).
To assess the level of inflammatory reaction occurring

in skeletal muscle of WT, miR-146a−/−, mdx, miR-
146a−/−mdx animals, the histological analysis was per-
formed (Fig. 3a). Since in miR-146a−/−mdx mice a
tendency toward stronger muscle degeneration and in-
flammatory infiltration was shown (Fig. 3a), as well as
raised expression of genes associated to inflammatory re-
action was observed (Fig. 1c), we decided to analyse
leukocyte populations of cells within the skeletal muscles
of hind limbs of mice of 4 genotypes (Figs. 3 and 4).

A

C

B

Fig. 1 General phenotype of muscle of WT, miR-146a−/−, mdx, and miR-146a−/−mdx mice. a Level of miR-146a in GM; qRT-PCR. b Dystrophin
expression in GM; IHF staining; representative photos; n = 3–5. c Il1b, Ccl2, Tnf level in GM; qRT-PCR. Mean +/− SEM; n = 3–11; *− p≤ 0.05; **− p≤
0.01; ***− p≤ 0.001. Scale bars 100 μm
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The percentage of macrophages (CD45+F4/
80+CD11b+), the cells that mainly infiltrate injured
muscle, was increased in mdx and miR-146a−/−mdx in
comparison to WT and miR-146a−/−, respectively
(Fig. 3b). However, no additional differences were shown
in mdx mice additionally lacking miR-146a in compari-
son to dystrophic animals (Fig. 3b), although again the
borderline increase in inflammation score is visible in
the absence of miR-146a (Fig. 3a). M1-like macrophages
(CD45+F4/80+CD11b+MHCIIhiCD206lo) and M2-like
macrophages (CD45+F4/80+CD11b+MHCIIloCD206hi)
were also investigated (Fig. 3c). Although a strong
increase of these cells in dystrophic mice was evident,
no further changes were detected in miR-146a−/−mdx
compared to mdx (Fig. 3c). Similar alterations were
shown in monocytes (CD45+F4/80−CD11b+Ly6-
C+Ly6G−) found within skeletal muscles, whereas no sig-
nificant differences were visible between four genotypes
in case of granulocytes (CD45+F4/80−CD11b+Ly6-
C+Ly6G+) infiltrating skeletal muscles (Fig. 3d); however,
the clear tendency for granulocytes increase is noted in
muscles lacking dystrophin (Fig. 3d).
The number of NK cells (CD45+SSClowCD3−NK1.1+)

was increased in mdx and miR-146a−/−mdx in comparison
to WT and miR-146a−/−, respectively (Fig. 4a). T
(CD45+SSClowCD3+), Th (CD45+SSClowCD3+CD8−CD4+),
and Tc (CD45+SSClowCD3+CD8+ CD4−) lymphocytes were
not altered between 4 genotypes (Fig. 4a, b). The percent-
age of Treg (CD45+SSClowCD3+CD8−CD4+CD25+Foxp3+)

tended to be elevated in dystrophic animals (mdx and
miR-146a−/−mdx) vs. their healthy counterparts
(Fig. 4c). The lack of miR-146a did not change the level
of Treg cells between mdx and miR-146a−/−mdx
(Fig. 4c). Accordingly, no changes were shown in the
number of lymphocytes in the peripheral blood of mice
of 4 genotypes (data not shown).

miR-146a deficiency does not affect proliferation and
differentiation of SCs
Since miR-146a was shown to affect proliferation of
myoblasts [42], we analysed quantity, proliferation, and
differentiation of SCs isolated from 4 genotypes. The
percentage of SCs (CD45−CD31−Sca1−α7integrin+)
among nucleated cells in the suspension of cells gener-
ated after enzymatic lysis of muscle tissue was reduced
in mdx and miR-146a−/−mdx in comparison to WT and
miR-146a−/−, respectively, though miR-146a deficiency
in dystrophic animals did not change it further
(Fig. 5a). Accordingly, the level of quiescent SCs
(CD45−CD31−Sca1−α7integrin+CD34+) was decreased
in dystrophic mdx and miR-146a−/−mdx mice, but the
lack of miR-146a did not affect it additionally (Fig. 5b).
The percentage of activated SCs (CD45−CD31−Sca1−α7in-
tegrin+CD34−) was not changed in mice of different geno-
types (Fig. 5b).
Since flow cytometric results are calculated in relation

to all nucleated cells, which are increased in dystrophic
muscles due to heavy immune infiltration, assessment of

A B

Fig. 2 Muscle degeneration of WT, miR-146a−/−, mdx, and miR-146a−/−mdx mice. a Activity of LDH and CK in plasma; activity test. b Necrosis in
GM; IHF staining of IgM and IgG binding and its calculation. Mean +/− SEM; n = 5–18; *− p≤ 0.05; **− p≤ 0.01; ***− p≤ 0.001; scale bars 100 μm
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the absolute number of SCs in muscles by IHF stain-
ing of Pax7 on muscle sections was additionally per-
formed. The number of Pax7+ cells was calculated in
relation to the total number of myofibres, as a more

stable parameter among genotypes than the number
of nuclei. The absolute number of SCs calculated by
this method is increased in dystrophic muscles
(Fig. 5c). Importantly, regardless of the method used,

A

B

C

D

Fig. 3 Infiltration of WT, miR-146a−/−, mdx, and miR-146a−/−mdx hind limb muscle with leukocytes, macrophages, monocytes, and granulocytes. a
Semi-quantitative analysis of inflammation in GM muscle; HE staining; representative photos. b Percentage of CD45+F4/80+CD11b+

macrophages; flow cytometry. c Percentage of M1-like macrophages (CD45+F4/80+CD11b+MHCIIhiCD206lo) and M2-like macrophages
(CD45+F4/80+CD11b+MHCIIloCD206hi); flow cytometry. d Percentage of monocytes (CD45+F4/80−CD11b+Ly6C+Ly6G−) and granulocytes
(CD45+F4/80−CD11b+Ly6C+Ly6G−); flow cytometry. Mean +/− SEM; n = 4–10; *− p ≤ 0.05; ***− p ≤ 0.001. Scale bars 100 μm
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there is no effect of miR-146a deficiency on SCs
count.
FACS-sorted SCs (CD45−CD31−Sca1−α7integrin+) were

cultured for 1 day in vitro and then proliferation was ana-
lysed by incorporation of EdU into DNA of cells
remaining in S-phase (Fig. 6a). We did not observe differ-
ences between SCs of mdx and miR-146a−/−mdx (Fig. 6a).
Proliferation was also analysed in CD45−CD31−Sca1−α7in-
tegrin+CD34+ and CD45−CD31−Sca1−α7integrin+CD34−

cells by flow cytometry assessment of cells in S + G2M
phases basing on an increased level of Hoechst incorpor-
ation (Fig. 6b). The proliferation of cells from dystrophic
muscles was increased and additionally, in the case of
CD45−CD31−Sca1−α7integrin+CD34+ SCs, the lack of
miR-146a reduced it in comparison to mdx animals. The
level of Numb protein, the target of miR-146a [42],
was also analysed in quiescent and activated SCs
(Fig. 6c). Its decreased level was observed in

A

B

C

Fig. 4 Infiltration of WT, miR-146a−/−, mdx, and miR-146a−/−mdx hind limb muscles with lymphocytes and NK cells. a Percentage of lymphocytes
T (CD45+SSCloCD3+NK1.1−) and NK cells (CD45+SSCloCD3−NK1.1+); flow cytometry. b Percentage of lymphocytes Th (CD45

+SSCloCD3+CD4+CD8−)
and Tc (CD45

+SSCloCD3+CD4−CD8+); flow cytometry. c Percentage of lymphocytes Treg (CD45
+SSCloCD3+CD4+CD8−Foxp3+CD25+); flow

cytometry. Mean +/− SEM; n = 9; **− p ≤ 0.01
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A

B

C

Fig. 5 Number of SCs from WT, miR-146a−/−, mdx, and miR-146a−/−mdx hind limb muscles. a Percentage of SCs (CD45−CD31−Sca1−α7integrin+);
flow cytometry. b Percentage of quiescent SCs (CD45−CD31−Sca1−α7integrin+CD34+) and activated SCs (CD45−CD31−Sca1−α7integrin+CD34−);
flow cytometry. c Ratio of Pax7+ cells to myofibre, IHF staining; representative photos. Mean +/− SEM; n = 5–10; *− p≤ 0.05; **− p≤ 0.01; ***− p ≤
0.001. Scale bars 50 μm
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CD45−CD31−Sca1−α7integrin+CD34+ isolated from
dystrophic animals, whereas no differences were
evoked by the additional lack of miR-146a in mdx
animals (Fig. 6c). We found no differences in Numb
expression in activated SCs (Fig. 6c).
To analyse the differentiation potential of SCs,

CD45−CD31−Sca1−α7integrin+ cells were FACS-sorted
and subjected to in vitro culture in DMEM medium sup-
plemented with 2% horse serum. SCs from mdx and
miR-146a−/−mdx formed multinucleated myotubes more
frequently than the appropriate control animals, but no
differences were visible between both dystrophic geno-
types (Fig. 7a). Moreover, neither histological examin-
ation of regenerating myofibres (with centrally located
nuclei, Fig. 7b) nor IHF staining of maturating myofibres
(expressing eMHC, Fig. 7c), revealed differences between
mdx and miR-146a−/−mdx muscles. In a qRT-PCR ana-
lysis of markers of differentiation, increased expression
of Myod1, Myog, and Myh3 in mdx vs. WT and miR-
146a−/−mdx vs. miR-146a−/− was observed, with no
effect of miR-146a deficiency (Fig. 7d). Expression of
miR-1 and miR-133a was downregulated in dystrophic
animals, whereas the opposite effect was found in the

case of miR-206 (Fig. 7e). Additionally, miR-206 was
increased in miR-146a−/−mdx in comparison to mdx ani-
mals (Fig. 7e).
miR-206 is not only involved in muscle develop-

ment, but it may also play a role in the regulation of
the angiogenesis process, mostly through the repres-
sion of proangiogenic VEGF [53–55]. Accordingly,
downregulation of miR-206 in mdx mice was shown
to significantly increase both the VEGF transcript and
protein level [56]. Furthermore, in the in silico stud-
ies, Vegfa is shown as one of the predicted targets of
miR-206 (miR-206-3p strain). Thus, although we did
not observe changes in Vegfa on mRNA level in
gastrocnemius muscle (Additional file 1: Figure S1A),
a significant decrease of VEGF protein was evident
in mdx vs. WT counterparts and was further dimin-
ished in mdx mice additionally lacking miR-146a
(Additional file 1: Figure S1B). Interestingly, the
potential impact of miR-146a on the regulation of
another pro-angiogenic factor, namely stromal cell-de-
rived factor-1α (SDF-1α, Cxcl12 gene), was revealed, as
the diminished level of Cxcl12 in miR-146a−/− vs. WT ani-
mals was noted (Additional file 1: Figure S1C).

A B

C

Fig. 6 a Proliferation of SCs from WT, miR-146a−/−, mdx, and miR-146a−/−mdx hind limb muscles. Percentage of in vitro proliferating (EdU+) SCs
(CD45−CD31−Sca1−α7integrin+); ICC-F staining; representative photos. b Percentage of proliferating SCs (CD45−CD31−Sca1−α7integrin+CD34+ and
CD45−CD31−Sca1−α7integrin+CD34−); flow cytometry. c Numb expression in SCs (CD45−CD31−Sca1−α7integrin+CD34+ and
CD45−CD31−Sca1−α7integrin+CD34+); flow cytometry. Mean +/− SEM; n = 4–10; *− p≤ 0.05; **− p≤ 0.01; ***− p≤ 0.001. Scale bars 100 μm
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Fig. 7 (See legend on next page.)
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miR-146a deficiency upregulates Tgfb1 expression but
does not affect collagen deposition in dystrophic muscles
miR-146a was shown to act as a negative regulator of
TGF-β signalling pathway affecting the fibrosis process
[39, 40, 57]. Accordingly, we have found increased Tgfb1
mRNA level in mdx vs. WT mice which was further ac-
celerated in mdx mice additionally lacking miR-146a
(Fig. 8a), suggesting that the deficiency of miR-146a
could increase fibrosis also in our model. Nonetheless,
no difference in mRNA level of another pro-fibrotic

factor, Mmp9, that was shown to be inhibited by the
miR-146a in human cardiac cells [58], in miR146-
a−/−mdx mice in comparison to mdx animals was visible
(Fig. 8b). Additionally, although the expression of
Col1a1 (Fig. 8c) and collagen deposition assessed by
Masson’s trichrome staining followed by the arbitrary
analysis (Fig. 8d) were increased in dystrophic mice, we
did not observe further induction in muscles additionally
lacking miR-146a. Finally, the level of FAPs
(CD45−CD31−Sca1+α7integrin−CD34+) (Fig. 8e) was

A

D

E

B C

Fig. 8 Fibrosis in WT, miR-146a−/−, mdx, and miR-146a−/−mdx hind limb muscles. a Tgfb1, b Mmp-9, and c Col1a1 level in GM; qRT-PCR. d Semi-
quantitative analysis of collagen deposition in GM; trichome staining; representative photos. e Percentage of FAPs; (CD45−CD31−Sca1+α7integrin−CD34+);
flow cytometry. Mean +/− SEM; n= 5–11; *− p≤ 0.05; **− p≤ 0.01; ***− p≤ 0.001. Scale bars 100 μm

(See figure on previous page.)
Fig. 7 Differentiation of SCs and regeneration of GM muscles WT, miR-146a−/−, mdx, and miR-146a−/−mdx mice. a Fusion index of in vitro
differentiated SCs (CD45−CD31−Sca1−α7integrin+); ICC-F; representative photos. b Semi-quantitative analysis of centrally nucleated myofibres in
GM; HE staining; representative photos. c Analysis of eMHC+ myofibres in GM; IHF staining; representative photos. d Myod1, Myog, Myh3, e miR-1,
miR-133a, miR-206 level in GM; qRT-PCR. Mean +/− SEM; n = 4–11; *− p≤ 0.05; **− p≤ 0.01; ***− p≤ 0.001. Scale bars 100 μm
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upregulated by dystrophin deficiency but was not af-
fected by miR-146a absence.

miR-146a deficiency does not aggravate dystrophy
progression in 24-week-old animals
Moreover, we have performed additional analysis in the
older, 24-week-old mice (Additional file 2: Figure S2).
However, our results do not show further aggravation of
the dystrophic phenotype. Although LDH (Additional
file 2: Figure S2 A) and CK (Additional file 2: Figure S2
B) activity are still potently elevated in mdx vs. WT
counterparts, additional lack of miR-146a does not fur-
ther accelerate the level of muscle damage markers in
serum. Obtained results were strengthened by the ana-
lysis of inflammation extent and regeneration in the
gastrocnemius muscle (based on the HE staining), which
consistently show no effect of the lack of miR-146a on
typical aspects of DMD pathology (Additional file 2:
Figure S2 C, D). Hence, our results indicate that the lack
of miR-146a does not affect the progression of DMD
with age in mdx mice.

Discussion
DMD is one of the most extensively described, inherited
disorders of the childhood. Despite its relatively high fre-
quency of occurrence and well-known both genetic and
molecular background, the disease is incurable and life
quality of DMD patients is significantly compromised
particularly in the last stages. Although the gene and cell
therapy were hoped to provide the ultimate cure for the
disease, technical obstacles and safety problems have
made them so far not effective enough [11, 25, 59].
Therefore, therapeutic strategies that are at present
examined are focused on ameliorating the destructive
effects of the disorder, not the dystrophin deficiency it-
self, and as such, they require a long-term application
[11, 25, 59]. For instance, a current gold standard for
treatment of DMD are corticosteroids, which due to
their anti-inflammatory effects provide stabilisation of
muscle strength and function, promote independent
ambulation, and delay the onset of scoliosis and cardio-
myopathy [25, 59]. However, they also result in weight
gain, gastrointestinal symptoms, and metabolic disorders
as well as osteoporosis, and thus chronic corticosteroids
application is not well tolerated by some patients [25, 59].
Therefore, compounds that can potentially diminish
progressive muscle damage by targeting inflammatory
reaction, innate immunological response, muscle regener-
ation, and fibrosis are constantly analysed in animal stud-
ies and clinical trials, to find a better and more effective
cure for the disease [11, 25]. In this context, profound and
comprehensive knowledge of the mechanisms regulating
the pathogenesis of DMD may help in the successful
search for factors modulating them. Since miR-146a is a

factor that was previously shown to diminish inflamma-
tion in different tissues [26–32, 35–38, 40], inhibit muscle
fibrosis [39, 40], and induce proliferation of myoblasts
[42], we have examined its role in the disease progression
in the murine model of DMD—mdx mice.
The effects of miR-146a in skeletal muscles have been

found mostly in the context of its anti-inflammatory
function so far. It is elevated in myositis muscles [32]
and upregulated in skeletal muscles in response to lipo-
polysaccharide [60] or TNF-like weak inducer of apop-
tosis (TWEAK) induction [61]. We have recently
demonstrated that miR-146a is raised in dystrophic mus-
cles [9], whereas others showed that it is decreased by
steroid treatment [62]. In the current model, this result
was also confirmed—we observed increased miR-146a
expression in mdx mice vs. WT. Although miR-146a
was also described to reduce the translation of dys-
trophin [63], we did not observe the induction of
dystrophin in mice lacking miR-146a. In line with that,
no differences in the level of muscle degeneration
(muscle necrosis and plasma activity of LDH) were
found in miR-146a-deficient animals, namely miR-
146a−/− or miR-146a−/−mdx vs. WT or mdx, respectively.
Only a muscle-specific marker of muscle damage, CK,
was increased in 12-week-old miR-146a−/−mdx vs.
dystrophic animals, but this difference disappeared in
24-week-old animals. Hence, miR-146a can partially
ameliorate disease severity in the younger mdx mice,
when the dystrophic phenotype is stronger. However, it
does not appear to aggravate disease progression in older
mdx mice, known to demonstrate stabilisation of muscle
pathology.
Since in DMD patients the induction of innate im-

munological response was shown to occur soon after the
birth, before the onset of muscle-related clinical symp-
toms [11], we decided to analyse the major cellular
components taking part in this process. Accordingly,
though apart from CK no differences in muscle degener-
ation in miR-146a-deficient mice were observed, in-
creased expression of proinflammatory cytokines (Il1b,
Ccl2, Tnf) in muscles lacking miR-146a was noted.
Moreover, in GM of miR-146a−/−mdx, we observed a
tendency to an increased inflammatory reaction, based
on semi-quantitative analysis of HE staining. However,
macrophages, which are the major population infiltrating
dystrophic muscles [15], remained unchanged upon
additional deletion of miR-146a in mdx mice. Similarly,
monocytes, as well as M1-like and M2-like macrophage
subtypes, were increased in dystrophic muscles, but no
differences were detected between miR-146a−/−mdx
and mdx animals. miR-146a was previously demon-
strated to inhibit the activity of the NF-κB pathway
[26–28] and production of proinflammatory cytokines
[30–32], among others prominent chemoattractant for
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monocytes/macrophages—CCL2 (C-C motif chemo-
kine ligand 2) [52]. Consequently, increased monocyte
and macrophage number were detected in the spleen
of 12-month-old mice lacking miR-146a [30] and in a
rat model of polymyositis with decreased miR-146a
level [35]. In our model of muscular dystrophy with
miR-146a deficiency, the lack of similar differences in
skeletal muscle may result from the higher miR-206
expression that was detected in miR-146a−/−mdx mice
in comparison to mdx animals, as this microRNA was
shown to directly diminish CCL2 expression [64, 65].
Previously, the effect miR-146a was shown to sup-
press mainly the activity of NK cells [33, 34], the
function of Treg [36, 37], and the resolution of T cell
response [29, 38]. However, similarly to macrophages,
no differences were found in number of T
(CD45+SSCloCD3+NK1.1−), Th (CD45+SSCloCD3+CD4+

CD8−), Tc (CD45+SSCloCD3+CD4−CD8+), and Treg

(CD45+SSCloCD3+CD4+CD8−Foxp3+CD25+) lymphocytes
and NK cells (CD45+SSCloCD3−NK1.1+) infiltrating
the skeletal muscle of mice of different miR-146a
genotype.
Little is known about the function of miR-146a in

skeletal SCs and myoblast. So far, it was demonstrated
that miR-146a is connected to the increased proliferation
and decreased differentiation, but the studies were done
in C2C12 myoblasts cell lines [41, 42]. In the current
research, we have therefore investigated the effect of
miR-146a deficiency on primary muscle SCs. Although
we have observed similarly disturbed SCs differentiation
in mdx mice as in previous study [9], we did not find
any influence of additional lack of miR-146a on number
of SCs (CD45−CD31−Sca1−α7integrin+), quiescent SCs
(CD45−CD31−Sca1−α7integrin+CD34+), and activated
SCs (CD45−CD31−Sca1−α7integrin+CD34−). To verify
these results, we performed also the analysis of Pax7+

cells in muscle sections confirming the lack of effect of
miR-146a on SCs quantity. Of note, contrary to SCs’
number calculated in relation to all nucleated cells in
flow cytometric analysis, Pax7+ staining revealed that the
number of SCs counted per myofibre is increased in
mdx animals. It should be, however, remembered that
calculation of SCs as a percentage of nucleated cells in
dystrophic muscles, strongly infiltrated by immune cells,
results in a reduction of SCs’ percentage that can create
a discrepancy in the interpretation of the effect of DMD
on satellite cells [20, 66, 67].
Though the proliferation of miR-146a−/−mdx CD34+

SCs was decreased, it was not confirmed by in vitro
incorporation of EdU compound or proliferation of
CD34− SCs. In line with that, Numb expression, which
was previously shown to be targeted by miR-146a [42],
was not changed in miR-146a−/− and miR-146a−/−mdx
vs. WT or mdx, respectively. Concomitantly, there were

neither differences in ex vivo differentiation potential of
FACS-sorted SCs lacking miR-146a nor in the rate of
regeneration in GM of miR-146a-deficient mice. The
expression of major MRFs (MyoD, myogenin), proteins
specific for regenerating fibres (eMHC), and myomirs
(miR-1, miR-133a) was also not affected, whereas
miR-206 was upregulated in miR-146a−/−mdx vs. mdx.
We did not, however, observe the beneficial effects of
increased miR-206 expression on muscle regeneration
that were previously demonstrated in dystrophic mus-
cles [48, 68].
Interestingly, a recent paper by Bulaklak et al.

suggested also another role for miR-206 in dystrophic
muscles [56]. AAV-mediated miR-206 inhibition was
able to attenuate dystrophic phenotype in mdx mice as
improved motor deficits and running capacities were
observed. Importantly, this effect was also associated
with the induction of angiogenic response by increased
Vegfa mRNA level and improved vascularisation. In our
hands, increased expression of miR-206 in miR-
146a−/−mdx mice correlated with a diminished protein
level of VEGF in muscles isolated from mice lacking
dystrophin and miR-146a. This could be, at least par-
tially, explained by the increased miR-206 expression.
Recent findings revealed that the impairment in angio-

genic response and alteration in angiogenic mediators
might highly contribute to DMD pathology (reviewed in
[69]). Therefore, the modulation of angiogenesis process
has been already considered as a therapeutic strategy to
ameliorate DMD progression. Interestingly, some studies
already revealed the involvement of miR-146a in the
blood vessel formation [70, 71]. The changes of Vegfa
and Cxcl12 expression noted in our studies warrants
further investigations on the role of miR-146a in
angiogenesis.
As in many chronic inflammatory disorders, also in

DMD, increased level of TGF-β is observed, associated
with the fibrotic replacement of muscle tissue [11].
Importantly, miR-146a was shown to act as a negative
regulator of TGF-β signalling pathway and to inhibit
fibrous scar formation in skeletal and cardiac muscle
[39, 40]. In accordance, we observed that Tgfb1 expres-
sion was increased in miR-146a deficient mdx mice mus-
cles. We have also noted an augmented collagen
deposition, number of FAPs, and expression of collagen
1α in both mdx and miR-146a−/−mdx animals in com-
parison to WT and miR-146a−/− mice, respectively.
Noteworthy, the above parameters were unaffected by
the lack of miR-146a itself when compared to the WT
counterparts, as well as in mdx mice devoid of miR-
146a, undermining the impact of the global lack of miR-
146a on muscle fibrosis in 12-week-old dystrophic mice.
Moreover, to investigate the effects of miR-146a defi-

ciency in older animals, we have performed additional
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analysis in the 24-week-old mice. However, further
aggravation of the muscle degeneration, inflammation,
and regeneration was not observed. Hence, our results
indicate that the lack of miR-146a does not affect the
progression of DMD with age. However, we have to be
aware that the mdx mice only partially reflect the human
DMD and present milder muscle phenotypes of inflam-
mation and fibrosis comparing to human patients. The
mice display minimally shortened lifespan; the muscle
damage and regeneration is evident in young animals,
but after 3 months of age, it is stabilised and does not
strongly progress [72–74]. Therefore, one may suggest
that the role of miR-146a can be better visible in other
DMD animal models, in which typical symptoms of the
disease related to inflammation and fibrosis are more
severe [72–74].

Conclusions
miR-146a is increased in dystrophic muscles, and its lack
in mdx mice is associated with the aggravation of some
of the markers of muscle damage and inflammation.
Additionally, the deficiency of miR-146a increases Tgfb1
expression while decreases Vegfa in dystrophic muscles.
Nevertheless, knockout of miR-146a does not evoke
significant changes in skeletal muscle degeneration and
regeneration in mdx model.

Additional files

Additional file 1: Figure S1 Angiogenic gene expression in WT, miR-
146a−/−, mdx and miR-146a−/−mdx mice. (A) Vegfa mRNA level in GM;
qRT-PCR, (B) VEGF protein level; Luminex analysis (C) Cxcl12 mRNA level
in GM; Mean +/− SEM; n = 4–6. (PDF 44 kb)

Additional file 2: Figure S2 The analysis of degeneration, inflammation
and regeneration of 24-week-old WT, miR-146a−/−, mdx and miR
-146a−/−mdx mice. The activity of (A) LDH and (B) CK in plasma; activity
test. Semi-quantitative analysis of (C) inflammation and (D) centrally
nucleated myofibres in GM; HE staining. Mean +/− SEM; n = 6–12; * - p≤
0.05; ** - p≤ 0.01; *** - p≤ 0.001. Scale bars: 100 μm. (PDF 69 kb)
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