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Abstract

Background: Histological assessment of skeletal muscle sections is important for the research of muscle physiology
and diseases. Quantifiable measures of skeletal muscle often include mean fiber diameter, fiber size distribution, and
centrally nucleated muscle fibers. These parameters offer insights into the dynamic adaptation of skeletal muscle
cells during repeated cycles of degeneration and regeneration associated with many muscle diseases and injuries.
Computational programs designed to obtain these parameters would greatly facilitate such efforts and offer significant
advantage over manual image analysis, which is very labor-intensive and often subjective. Here, we describe a customized
pipeline termed MuscleAnalyzer for muscle histology analysis based upon CellProfiler, a free, open-source software for
measuring and analyzing cell images.

Results: The MuscleAnalyzer pipeline consists of loading, adjusting, and running a series of image-processing modules
provided by CellProfiler. This pipeline was evaluated using wild-type and mdx muscle sections co-stained with laminin
(to demarcate the muscle fiber boundaries) and 4′,6-diamidino-2-phenylindole (DAPI, to label the nuclei). The
immunofluorescence images analyzed using the MuscleAnalyzer pipeline or manually yielded similar results in
the number of muscle fibers per image (p = 0.42) and central nucleated fiber (CNF) percentage (p = 0.29) in
mdx mice. However, for a total of 67 images, CellProfiler completed the analysis in ~ 10 min on a regular PC
while it took an investigator ~ 3 h using the manual approach in order to quantify the number of muscle
fibers and CNF. Moreover, the MuscleAnalyzer pipeline also provided the measurement of the cross-sectional
area (CSA) and minimal Feret’s diameter (MFD) of muscle fibers, and thus fiber size distribution can be plotted.

Conclusions: Our data indicate that the MuscleAnalyzer pipeline can efficiently and accurately analyze laminin and
DAPI co-stained muscle images in a batch format and provide quantitative measurements for muscle histological
properties such as muscle fiber diameters, fiber size distribution, and CNF percentage.
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Background
Skeletal muscle is an exceptionally adaptive tissue. During
endurance exercise, skeletal muscle undergoes extensive
adaptation by changing their fiber type composition and
fiber size [1–3]. Upon injuries, satellite cells associated
with skeletal muscle are activated to proliferate, fuse to
form myotubes, and eventually regenerate new muscle fi-
bers [4–7]. In genetic myopathies such as Duchenne mus-
cular dystrophy (DMD), a fatal X-linked recessive muscle
disease caused by genetic mutations leading to the loss of
dystrophin [8], repeated cycles of muscle injury, and repair

result in increased variation of fiber size and muscle fibers
with central nuclei [9, 10]. Examination of muscle
cross-sections is therefore often carried out to assess such
changes in the fields of myopathy and rehabilitation sci-
ence. However, the methods to quantify these changes
remain challenging among investigators and often require
painstaking manual procedures [11, 12]. Traditionally,
visually identifying muscle nuclei and manually measuring
the muscle fiber size manual tracing of individual fibers
are relatively subjective and time consuming. These tasks
are highly susceptible to both inter-individual and
inter-laboratory variability, often resulting in discrep-
ancies within the literature, despite the use of similar
animal models under similar experimental settings.
Several semi-automatic approaches to analyze muscle
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histopathology currently exist [12–15]. However, their
usage has not been widely adopted, likely due to the
cost or the difficulty to implement them with some
requiring basic programming skills.
Recently, a free, open-source software called CellProfiler

has increasingly gained popularity and visibility in the field
of automated image analysis, which provides a platform
for the user to create customized pipelines for image ana-
lysis. CellProfiler is developed by the Carpenter Labora-
tory at the Broad Institute of Harvard and MIT that
allows investigators with little prior bioinformatics know-
ledge to automate image analysis and collect large
amounts of phenotypic data relatively easily [16, 17]. The
goal of this work is to provide a free, easy-use, fast, and re-
liable pipeline for CellProfiler to analyze and quantify
muscle histological properties using immunofluorescence
images of muscle cross-sections.

Implementation
Mice
Mice (C57BL/10ScSn and C57BL/10ScSn-Dmdmdx/J) were
maintained at The Ohio State University Laboratory Ani-
mal Resources in accordance with animal use guidelines.
All animal studies were authorized by the Animal Care,
Use, and Review Committee of the Ohio State University.

Immunofluorescence staining of muscle cross-sections
and imaging
Quadriceps muscles were collected from five male
wild-type (WT) and five male mdx mice at the 8 weeks
of age. Skeletal muscle tissues were mounted in Optimal
Cutting Temperature (OCT) and frozen in liquid nitro-
gen cooled isopentane. Muscle cryosections were pre-
pared using Leica CM3050S cryostat (Leica Biosystems,
Buffalo Grove, IL, USA) at a thickness of 7 μm. The sec-
tions were fixed with 4% paraformaldehyde for 15 min
at room temperature followed by two washes with PBS
and 1 h incubation with blocking solution (5% bovine
serum albumin) prior to overnight incubation at 4 °C
with primary antibody against laminin α2 (ALX-804-190,
1:100, Alexis). The slides were then extensively washed
with PBS and incubated with secondary antibodies
(Alexa Fluor 488 goat anti-rat IgG, 1:500, Invitrogen) for
1 h at room temperature. Finally, the slides were
mounted using VECTASHIELD® Mounting Medium
with DAPI (Vector Laboratories, Inc.) and imaged with
a × 20 lens in an inverted Nikon microscope (Nikon). A
total of 70 non-overlapping images (approximately 250
muscle fibers per image for WT and 200 for mdx) were
captured from 5 WT and 5 mdx mice (7 images per
mouse) and saved in the ND2 file format with green
channel for laminin and blue channel for DAPI. These
images were also exported into the TIFF file format.

Both ND2 and TIFF formats can be used as input im-
ages for CellProfiler.

CellProfiler-facilitated automation of image processing
The stable version (2.2.0) of CellProfiler downloaded from
the CellProfiler website (www.cellprofiler.org) and installed
on a PC (Intel Xeon CPU E5–1620 v2 @3.70 GHz, 32.0 GB
RAM, and 64-bit Windows 7 operating system) was used
for the data processing in this manuscript. The current
stable version is 3.0.0 at the time of this manuscript submis-
sion. CellProfiler is available for Windows, Mac and Linux.
Java installation is required prior to installing CellProfiler.
Users are encouraged to read the CellProfiler manuals
(http://cellprofiler.org/manuals/) before testing the pipeline.
The MuscleAnalyzer pipeline (ND2) for CellProfiler version
2.2.0 (Additional file 1) and 3.0.0 (Additional file 2), as well
as the MuscleAnalyzer pipeline (TIFF) for CellProfiler ver-
sion 3.0.0 (Additional file 3) are available online.

Manual muscle fiber counting and CNF determination
To further validate the data generated by CellProfiler,
muscle fiber counting, CNF percentage, CSA, and MFD
were determined manually using Nikon NIS Elements
software (version 4.3, Nikon). For CNF counting, two
different classes were assigned for CNF and total fibers
under count and taxonomy from manual measurement
control window. To determine CSA and MFD, each in-
dividual muscle fibers were detected as object manually.
The results were exported to Excel files. Total of seven
non-overlapping images per section of each mouse were
captured, and the percentage of CNF was determined.

Results
Muscle fiber and nuclei identification
The laminin α2 (green) and DAPI (blue) co-stained muscle
sections of WT and mdx mice were imaged and saved to
ND2 files using the NIS-Elements Advanced Research soft-
ware provided by Nikon (Fig. 1). CellProfiler supports a
wide variety of image formats, including most of those
used in imaging, by using a library called Bio-Formats
(http://docs.openmicroscopy.org/bio-formats/5.7.0/suppor-
ted-formats.html). In our initial test, we found that Cell-
Profiler can directly analyze both ND2 files and TIFF files,
and thus for all our following studies, we used ND2 files
without prior conversion into TIFF files. Upon startup, the
user is provided with an empty pipeline, which consists of
Input modules, analysis modules, and output settings
(Fig. 2). A typical CellProfiler workflow is summarized in
the flowchart (Additional file 4). Basically, the images are
loaded and then processed (e.g., cropping, illumination cor-
rection, object identification, object classification, measure-
ments, and data output). A step-by-step video tutorial is
provided to guide the implementation of MuscleAnalyzer
pipeline (Additional file 5).
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To demonstrate the process of automated imaging
analysis using CellProfiler, we first loaded an mdx
image in ND2 file format by dragging the file into the
“File list” of the “Images modules” under “Input mod-
ules” (Fig. 2). The metadata of the image can be ex-
tracted using the “Metadata module.” You may also
need to set up the correct image type using the
“NamesAndTypes module” and assign a name to the

image. Under the “Analysis modules,” individual ana-
lysis modules can be added.
For analyzing ND2 color images (Fig. 3a), the first step

is to split the color images into grayscale images for each
channel using the “ColorToGray” module (Fig. 1). The
green channel of laminin staining (Fig. 3b) will be used
to identify the muscle fiber and blue channel of DAPI
staining (Fig. 3c) will be used to identify the nuclei. The

Fig. 1 Representative immunofluorescence images of WT and mdx skeletal muscle sections stained with laminin α2 (green) and DAPI (blue)

Fig. 2 CellProfiler (version 2.2.0) interface. a The pipeline panel consists of input modules for data entry (image file or folder name, image type,
and grouping of images). The analysis modules is the platform to build up the analysis pipeline from the module ‘ColorToGray’ to ExportToSpreadsheet,’
which can be inserted by clicking the ‘+’ sign below the pipeline panel
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grayscale image of the green channel was then inverted
using the “ImageMath” module (Fig. 3d). Next, the
“IdentifyPrimaryObjects” module was used on the
inverted image of the green channel to identify the muscle
fiber. By setting the minimal and maximal diameter of
muscle fibers, we can filter out any objects outside the
diameter range. We used the “RobustBackground”
method to threshold the image, and the key parameters
such as threshold correction factor and size of smoothing
filter for declumping are important to determine the reli-
ability of muscle fiber identification. By adjusting these pa-
rameters, we were able to achieve a satisfactory result in
identifying muscle fibers on our sample image (Fig. 3e). By
applying the “MeasureObjectSizeShape” module here, we
can obtain total muscle fiber numbers and the muscle
fiber area, which can be exported into an Excel file later
using the “ExportToSpreadsheet” module. The muscle
fiber objects were shrunk by several pixels (in our sample
image, we set the number of pixels to be 7) using the
“ExpandOrShrinkObjects” module (Fig. 3f) in order to
classify them as CNF or normal later. Using shrunk
muscle fibers would ensure that these associated nuclei

are located on the muscle edge or in the center. An over-
lay of the identified muscle fibers (red) with the original
green channel image (gray) in Fig. 3g showed that the ma-
jority of the muscle fibers were correctly identified.
To identify the nuclei on the DAPI-stained nuclei

image in the blue channel, we applied the “IdentifyPri-
maryObjects” module again by using the “Automatic”
threshold strategy. The smoothing filter size and maxima
suppression distance were again important for faithfully
detecting the nuclei. As shown in Fig. 3h, we were able
to detect the nuclei on the sample image. For central nu-
clei classification, we again used the “ExpandOrShrin-
kObjects” module to shrink the nuclei object to a point
to minimize the chance whereas the nuclei objects
touching the border of muscle objects were incorrectly
classified as central nuclei.

Count CNF and normal muscle fibers
After having successfully identified the muscle fibers and
the nuclei, our next step is to relate these two objects so
that we can count the muscle fibers with or without cen-
tral nuclei. For this purpose, we used the “RelateObjects”

Fig. 3 Sample image processing by CellProfiler. a Original RBG image of mdx muscle section stained with laminin α2 (green) and DAPI
(blue). b, c Converted grayscale images of each channel after running the “ColorToGray” module. d Inverted green channel image. e Pseudo-colored
image to show individual muscle fibers identified by using ‘IdentifyPrimaryObjects’ module. f The identified muscle objects were shrunk by seven
pixels in order to determine if they contain central nuclei. g Outlines of identified muscle fibers were overlaid with original green channel image to
illustrate the accuracy of muscle fiber identification. h Pseudo-colored image to show individual nuclei identified by using ‘IdentifyPrimaryObjects’
module. i The outlines of identified muscle fibers and nuclei were overlaid with original green channel image to illustrate the accuracy of classification
with either normal (blue) or central nucleated muscles (red)
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module to relate these two objects. The shrunk nuclei
were used as the “child objects” while the shrunk muscle
fibers as the “parent objects.” This allows us to count
the number of child objects (shrunk nuclei) associated
with each parent object (shrunk muscle fibers). After
this step, the “ClassifyObjects” module can be applied to
classify the shrunk muscle fibers with 0 (normal) or at
least 1 nuclei (CNF). As shown in Fig. 3i, the CNF (red)
and normal muscle fibers (blue) were correctly differen-
tiated. At the end of the pipeline, “SaveImages” and
“ExportToSpreadsheet” modules can be used to save
images and export measurements to Excel files,
respectively.

Comparison between manual and semi-automated
approaches
To compare the performance of the MuscleAnalyzer
pipeline versus manual fiber counting, we captured 7
images of randomly chosen non-overlapping regions
per muscle section from WT and mdx mice (5 each),
resulting in a total of 70 images to be analyzed. A
quick examination of these 70 images found that
three images had large area of artifact staining in blue
channel and were excluded from the analysis. We
thus analyzed the 67 images (Additional file 6) by ei-
ther CellProfiler or the traditional manual approach.

It took about 11 min for CellProfiler on a PC (Intel
Xeon CPU E5-1620 v2 @3.70 GHz, 32.0 GB RAM,
and 64-bit Windows 7 operating system) to complete
all these 67 images. One image from each of the 5
WT and 5 mdx muscles were shown in Fig. 4a.
Clearly, the majority of the WT muscle fibers were
identified as normal (blue) while the majority of the
mdx muscle fibers were identified as CNF (red). Care-
ful examination of the analyzed images found three were
not correctly processed with a large black area (Fig. 4b).
This was due to the “threshold correction factor” being set
at too high. By lowering down this value from 0.985 to
0.975, we can recover the missing muscle fibers on this
particular image (Fig. 4b). Careful comparison of the
pseudo-colored muscle fiber image (the right image) with
the original laminin-stained image shown on the left
(Fig. 4b) showed that several mistakes were made by Cell-
Profiler. Some inter-muscle fiber regions were identified
as muscle fibers (Fig. 4b, blue star). In addition, some
muscle fibers were split into two (Fig. 4b, blue boxes).
However, most muscle fibers were correctly identified.
We also analyzed these 67 images by the manual ap-

proach. It took an experienced investigator roughly 3 h
to complete the task. The average number of muscle fi-
bers identified per image with CellProfiler was similar to
that counted by the manual approach in mdx samples;

Fig. 4 Examples of correctly and incorrectly processed muscle images. a Representative pseudo-colored images from all five WT and mdx mice
after processed by CellProfiler. Red, centrally nucleated fibers; blue, normal fiber. b An incorrectly processed image with a large black area, which
was due to a high threshold setting and can be corrected by lowering the threshold from 0.985 to 0.955. The blue stars showing the inter-fiber
spaces that were mistakenly identified as muscle fibers; the blue boxes indicating individual muscle fibers that were mistakenly split into two
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however, there was about 6% less of muscle fibers identi-
fied by CellProfiler than the manual approach for the
WT samples (Fig. 5a). The calculated CNF percentage
was again fairly comparable between the two approaches
for mdx samples (56.7 by CellProfiler vs 61.8 manually,
p = 0.29) (Fig. 5b), indicating that the CellProfiler can be
used to automate the process for muscle immunofluor-
escence image analysis. It is of note that CellProfiler ob-
tained significantly more CNFs than the manual
approach did in WT samples (1.9 by CellProfiler vs 0.1
manually, p = 0.001) (Fig. 5b), however, these numbers
are still within the normal range of healthy sample varia-
tions. Moreover, we also compared these two approaches

for the measurement of CSA and MFD using three
independent images per genotype. As shown in
Fig. 5c, d, CellProfiler obtained very similar measure-
ments as the manual approach; however, the time
used by CellProfiler to complete the same task was
only a small portion of that used by the latter.
Finally, we used CellProfiler to automate the meas-
urement of CSA for all 67 images to derive the fiber
size distribution. Consistent with the muscular dys-
trophy phenotype, mdx muscle showed an increase
in both very small (regenerative) and very large
(hyper-contracted) muscle fibers, while WT muscles
showed a more even distribution (Fig. 5e).

Fig. 5 Quantitative measurements of the 67 images processed manually or by CellProfiler. a The average number of muscle fibers per
image. b The percentage of CNF. c CSA measurements. d MFD measurements determined by CellProfiler or the manual approach. e Size
distribution of WT and mdx muscle fibers generated from the CSA data produced by CellProfiler
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Discussion
In this study, we compiled a pipeline termed MuscleA-
nalyzer for CellProfiler to automatically process im-
munofluorescence images of muscle cross-sections
stained with laminin α2 and DAPI. Laminin α2 staining
was used to facilitate the determination of individual
muscle fibers while DAPI staining was used to label cell
nuclei. The parallel comparison with MuscleAnalyzer
and manual approach showed that the MuscleAnalyzer
pipeline can provide relatively accurate measurements of
muscle features such as CNF percentage, fiber diame-
ters, and fiber size distribution with minimal efforts and
time. This should aid the pathophysiological studies of
muscle diseases and evaluation of therapeutic impact.
The most critical steps involve the identification of

muscle fibers and nuclei, and then classification of
muscle fibers into CNF or normal through correlation of
nuclei with muscle fibers. CellProfiler uses the term “ob-
ject” as a generic term to refer to an identified feature
(for example, nuclei and muscle fibers) in an image.
Nuclei are more easily identifiable due to their more
uniform morphology, high contrast relative to the back-
ground with DAPI staining, and good separation be-
tween adjacent nuclei. However, muscle cells often have
irregular morphology, varying sizes, uneven and more
diffused staining patterns, making them much more
challenging to identify than nuclei [12, 18]. Moreover,
muscle cells often touch their neighbors making it
harder to delineate the cell borders. To use the “Identify-
PrimaryObjects” module to identify either nuclei or
muscle fibers, the ND2 images should be converted to
grayscale images for the corresponding channels. The
laminin-stained channel needs to be inverted using the
“ImageMath” module. Object identification (segmenta-
tion) is performed through image thresholding, recogni-
tion and division of clumped objects, and removal or
merging of objects on the basis of size or shape [16].
Therefore, it is important to test the thresholding pa-
rameters for correct segmentation. The “Test Mode”
provided by CellProfiler makes it convenient to test indi-
vidual modules of the pipeline before final batch analysis
of a large set of images.
For laminin-stained muscle sections, we found that

the “Global” strategy of thresholding, which calculates
a single threshold value based on the unmasked pixels
of the input image and use that value to classify
pixels above the threshold as foreground and below
as background, and the “RobustBackground” method
for finding thresholds automatically, provided the best
results in muscle fiber identification. The “Robust-
Background” method assumes that the background
distribution approximates a Gaussian by trimming the
brightest and dimmest 5% of pixel intensities, and
then calculates the mean and standard deviation of

the remaining pixels, and the threshold as the mean
+ 2 times the standard deviation [16, 19]. The thresh-
old can be further adjusted either upwards or down-
wards through multiplying it by the “threshold
correction factor.” The strategy that we used to clas-
sify the CNF is to relate the nuclei and muscle fibers
using the “RelateObjects” module after shrinking
muscle fibers by several pixels and nuclei to a point.
This strategy appears to be robust; however, the num-
ber of pixels to be shrunk for muscle fibers need to
be empirically determined.
Three common errors associated with identification of

muscle fibers include (1) some inter-muscle fiber spaces
and blood vessels were mistakenly counted as muscle
fibers due to the fact that the laminin staining on the
surrounding muscle fibers formed closed compartments;
(2) some muscle fibers were merged due to the difficulty
in correctly finding the borders of the touching muscle
fibers; and (3) some muscle fibers were split into smaller
ones due to high background intracellular staining.
Carefully adjusting the parameters for thresholding can
greatly minimize the rate of these errors but does not
seem to completely get rid of them. It is worthy to test if
adding a third staining of muscle fibers such as collagen
(to label inter-muscle fiber regions) and muscle-specific
cytoplasmic proteins (i.e., desmin and α-actinin, to label
muscle fibers) could help to further reduce the errors in
the future.
Several other semi-automatic analysis tools have

been reported [12–15]. We have attempted to test
and compare these tools with CellProfiler and found
CellProfiler is relatively easy to implement. We did
not test all these tools because they are either not
available on internet or purchase is required. From
the original reference, it appears that MuscleQNT can
quantify only CSA and fiber distribution, while the
MuscleAnalyzer pipeline can obtain CNF, MFD, CSA,
and potentially other more parameters with some
modifications. We were able to download, install, and
test the standalone SMASH program, unfortunately
we were unable to export the data to Excel files at
the end. Moreover, SMASH can only analyze the im-
ages one-by-one, while CellProfiler can analyze the
data in a batch format, enabling full automation. Fi-
nally, CellProfiler provides a free and flexible platform
to a wide range of users in performing image analysis,
which has been cited more than 6000 times. The
established pipelines are easy to share among the re-
search community allowing fast improvement and in-
creased scientific reproducibility.
There are several limitations for the current version of

our MuscleAnalyzer pipeline. First, it does not incorpor-
ate the function to manually correct the wrongly identi-
fied muscle fibers. However, our initial study with the 67
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images showed that the error for muscle fiber identifica-
tion was less than 10%. In a fully automation setting to
analyze a large number of images, such an error rate
does not appear to affect the conclusion of CNF, CSA,
and MFD, particularly in diseased muscles. Second, we
have not incorporated the function to analyze other use-
ful parameters for muscle biology, such as satellite cells,
muscle fiber types, and muscle fibrosis. Future improve-
ments can be made to incorporate these functions. Last
but not least, it is important to acquire high quality im-
ages in order for the MuscleAnalyzer pipeline to accur-
ately identify muscle fibers and nuclei. Tissue tearing/
folding and freezing artifacts during tissue section prep-
aration should be minimized.

Conclusions
Taken together, the MuscleAnalyzer pipeline for CellPro-
filer allows rapid and accurate batch analysis of skeletal
muscle cross-sectional immunofluorescence images. Al-
though we only test it for CNF, CSA, and MFD, one can
envision it would allow for quantification of other traits
of skeletal muscle such as characterization of muscle sat-
ellite cell, muscle fiber type, necrosis and fibrosis with
minor modifications of the pipeline. This should aid the
unbiased pathophysiological studies of muscle diseases
and evaluation of therapeutic impact.

Availability and requirements
Project name: MuscleAnalyzer pipeline for CellProfiler
version 2.2.0 and 3.0.0.
Project homepage: N/A.
Operating system: Platform Independent.
Programming language: Python.
Other requirements: MuscleAnalyzer pipeline requires

CellProfiler which is freely available from CellProfiler
(http://cellprofiler.org/) developed by the Carpenter Lab
at the Broad Institute of Harvard and MIT. Java installa-
tion is required prior to installing CellProfiler.
License: CC-BY.
Any restrictions to use by non-academics: None.

Additional files

Additional file 1: MuscleAnalyzer pipeline (ND2) for CellProfiler version
2.2.0. (CPPIPE 19 kb)

Additional file 2: MuscleAnalyzer pipeline (ND2) for CellProfiler version
3.0.0. (CPPIPE 17 kb)

Additional file 3: MuscleAnalyzer pipeline (TIFF) for CellProfiler version
3.0.0. (CPPIPE 17 kb)

Additional file 4: Flow chart illustrating the sequence of image
processing with CellProfiler. (PPTX 41 kb)

Additional file 5: A step-by-step video tutorial for image analysis using
MuscleAnalyzer pipeline in CellProfiler 3.0.0. (MOV 120693 kb)

Additional file 6: Sample image dataset. (RAR 358466 kb)
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