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Linkages between changes in the 3D
organization of the genome and transcription
during myotube differentiation in vitro
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Abstract

Background: The spatial organization of eukaryotic genomes facilitates and reflects the underlying nuclear processes
that are occurring in the cell. As such, the spatial organization of a genome represents a window on the genome
biology that enables analysis of the nuclear regulatory processes that contribute to mammalian development.

Methods: In this study, Hi-C and RNA-seq were used to capture the genome organization and transcriptome in mouse
muscle progenitor cells (C2C12 myoblasts) before and after differentiation to myotubes, in the presence or absence of
the cytidine analogue AraC.

Results: We observed significant local and global developmental changes despite high levels of correlation between
the myotubes and myoblast genomes. Notably, the genes that exhibited the greatest variation in transcript levels
between the different developmental stages were predominately within the euchromatic compartment. There was
significant re-structuring and changes in the expression of replication-dependent histone variants within the HIST1
locus. Finally, treating terminally differentiated myotubes with AraC resulted in additional changes to the transcriptome
and 3D genome organization of sets of genes that were all involved in pyroptosis.

Conclusions: Collectively, our results provide evidence for muscle cell-specific responses to developmental and
environmental stimuli mediated through a chromatin structure mechanism.
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Background
Skeletal muscle development (myogenesis) is a complex,
multistep process that converts multipotent mesodermal
cells into myotubes and, subsequently, muscle fibres [1, 2].
This developmental process commences with progenitor
proliferation, continues with exit from the cell cycle, early
differentiation, alignment and fusion of the mononucle-
ated myoblasts into multinucleated myotubes (late/ter-
minal differentiation) [1–3]. Myogenesis is associated with
the stable expression of muscle-specific genes and gene
families including the myosin heavy chain (MHC) and the
actin gene [4] superfamilies, which contribute to the thick
and thin components of the sarcomere in the muscle
fibres [5–9], respectively.

Muscle differentiation and cell cycle arrest are tightly
regulated and highly interdependent. For example,
Myod1 regulates cell cycle arrest by inducing p21
(Cdkn1a), which is a major cyclin-dependent kinase
(CDKs) inhibitor; the expression of which results in cell
cycle withdrawal [10, 11]. Additional CDK inhibitors (i.e.
p21(Cdkn1a), p27(Cdkn1b) [12], p57(Cdkn1c) [11]) and
retinoblastoma protein Rb (Rb1) [13–15] are induced
during myogenesis to help govern cell cycle withdrawal.
The post-mitotic state of differentiated cells is achieved
by the expression of CDK inhibitors and, mainly, p21
(Cdkn1a) [10, 11].
At the molecular level, cell fate determination and ter-

minal differentiation of the myogenic lineage-committed
cells is managed by a network of muscle-specific helix-
loop-helix myogenic regulatory factors (MRFs) [16–19].
These MRFs (e.g. Myod1, Myf5, Myf6 and myogenin)
are exclusively expressed in cells committed to the

* Correspondence: justin.osullivan@auckland.ac.nz
1Liggins Insitute, University of Auckland, Grafton, Auckland 1032, New
Zealand
2Liggins Institute, University of Auckland, Private Bag 92019, Auckland 1142,
New Zealand

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Doynova et al. Skeletal Muscle  (2017) 7:5 
DOI 10.1186/s13395-017-0122-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13395-017-0122-1&domain=pdf
mailto:justin.osullivan@auckland.ac.nz
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


myogenic lineage. In general, MyoD and Myf5 are
expressed in proliferating, undifferentiated cells [20, 21].
In contrast, myogenin expression is induced upon early
to late muscle differentiation [1, 22–25], while Myf6 is
expressed throughout myogenesis [26].
On both the global and local scales, chromatin interac-

tions make an essential contribution to establishing and
maintaining the genome organization in the eukaryotic
nucleus [27–34]. The formation of particular interactions
in response to the presence or absence of cell-type-
specific transcription factors (TFs) has been previously
reported for a variety of mammalian cells [35–38]. As
such, genome organization and nuclear function are inter-
related, but the mechanisms that govern the interrelation-
ship are not yet fully elucidated. Despite this, there are
several ubiquitous principles for the spatial organization
of mammalian genomes [34, 39]. Firstly, chromosomes
occupy preferred non-exclusive positions, or territories, in
the nuclear space [40, 41]. Secondly, chromosomal sub-
regions fold into topologically associating domains (TADs)
[34, 39, 42–44] that they are enriched for intra-domain
interactions and depleted of inter-domain interactions [34,
39, 42–44]. Finally, contiguous TADs fall into either A or
B compartments, which are megabase-sized nuclear do-
mains related to genomic function, that are correlated
with early replication and active chromatin (i.e. euchroma-
tin), or late replication and repressed chromatin states (i.e.
heterochomatin), respectively [39, 43].
We interrogated the interrelationship between 3D

genome organization and gene expression during muscle
development in vitro using the mouse C2C12 cell line.
C2C12 cells were cultured and harvested as (1) proliferat-
ing myoblasts (myoblasts), (2) myotubes, or (3) myotubes
that were treated with AraC (a cytidine analogue that is
incorporated into newly synthesized DNA [45–49] leading
to the termination of DNA elongation, DNA fragmenta-
tion [50] and, eventually, cell death) to deplete the culture
of undifferentiated myoblasts. The C2C12 cell line is a
well-established and extensively studied in vitro model
[51–53] derived from serial passage of myoblasts cultured
from the thigh muscle of C3H mice after a crush injury
[54]. Our results provide evidence for (1) differential and
ongoing expression of replicative histone variants within
the HIST1 locus during muscle cell development and (2)
muscle cell-specific responses to developmental and envir-
onmental stimuli mediated through a chromatin structure
mechanism.

Methods
C2C12 cell culturing
Myoblasts from the skeletal muscle-derived C2C12 cell line
were obtained from American Type Culture Collection
(ATCC® CRL1772™). All experiments were performed using
cells at passage 3.

C2C12 myoblasts were propagated at 37 °C, 5% CO2

in Dulbecco’s modified Eagle’s medium (DMEM; high
glucose, +pyruvate, +phenol red, +L-glutamine; Gibco®
11995–073) supplemented with 10% foetal bovine serum
(FBS; Gibco®) and antibiotics (penicillin 100 U/ml,
streptomycin 100 μg/ml) (Gibco®). Myoblasts were
plated at a low cellular density of 5 × 103/cm2 (to achieve
sub-confluent myoblast cultures) or a high cellular dens-
ity of 2.5 × 104/cm2 (to allow cell crowding and myo-
genic differentiation to occur).
Six replicate T75 culture flasks (Greiner bio-one,

658175, 20 mL media volume) were plated for each ex-
perimental condition to achieve cell numbers required
for Hi-C. Following 72 h proliferation, cells which were
plated at the low density were harvested as sub-
confluent myoblast cultures (myoblasts). At the same
time (D0), high-density cultures were switched to differ-
entiation media (DMEM, 2% horse serum (HS, Gibco®
16050–122), penicillin 100 U/ml, and streptomycin
100 μg/ml) to induce myotube formation. Following
3 days of differentiation, myotube cultures were either
harvested (myotubes) or switched to differentiation
media supplemented with 10 μg/mL cytosine β-D-arabi-
nofuranoside (AraC, Sigma, C1768) in order to eliminate
undifferentiated myoblasts. AraC media was replaced on
day 5 before harvesting the AraC-treated myotubes on
day 7 (AraC-treated myotubes). Cell densities at plating
and harvesting were as indicated in Additional file 1:
Table S1.

Immunocytochemistry
In 72 h after proliferation, or 3 and 7 days after switch
to differentiation media, culture media from the individ-
ual wells of the 12-well plates was removed from myo-
blasts, myotubes and AraC-treated myotubes,
respectively, and replaced with fresh pre-warmed
DMEM supplemented with 10% FBS or 2% HS, myo-
blasts and myotubes, respectively, and MitoTracker® Red
CMXRos dye. Cells were incubated (37 °C, 30 min) in
the presence of MitoTracker® (final conc. 300 nM in
1 mL DMEM), followed by 2 × 5 min incubations in
DMEM (1 ml, 37 °C) to remove unbound dye. Cells
were fixed in formaldehyde/PBS w/v (1 ml, final conc.
3.7%, 15 min, 37 °C) and washed with three changes of
PBS (1 ml, 5 min, 37 °C each). Fixed cells were perme-
abilized with Triton X-100/PBS w/v (1 ml, final conc.
0.1%) for 10 min at RT, washed three times with 1 ml
PBS (5 min, RT), blocked in 300 μl of 1%w/v bovine
serum albumin (BSA)/PBS (1 h, RT) and incubated (o/n,
4 °C) in blocking buffer containing primary antibody
against sarcomeric myosin (MF20 antibody) (300 μl, 1:20
dilution). In the following day, cells were washed in PBS
(5 min, RT) repeated five times and then incubated in Goat
anti-Mouse IgG (H + L) Alexa Fluor® 488-conjugated
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secondary antibody (300 μl diluted 1:200 in PBS) with
300 nM 4′,6-diamidino-2-phenylindole (DAPI; 1 h, RT).
Following further washing in PBS (5 min, RT), cells were
imaged using the Molecular Devices ImageXpress Micro
XLS High-content Screening System equipped with Andor
Zyla CMOS camera and ×10/0.3 NA Plan Fluor lens. Im-
ages were captured from nine random pre-selected sites in
each of three replicate culture wells. Global linear adjust-
ments to image fluorescent signal brightness/contrast were
made in ImageJ.

Image capture analysis
High-content screening (HCS) of C2C12 myoblasts was
performed throughout the time course of differentiation
using a Molecular Devices ImageXpress Micro XLS au-
tomated wide-field microscope.
MetaXpress software (version 5.3.0.5, Molecular De-

vices) was used for automated image analysis of the extent
of myogenic differentiation. Briefly, the Multi-Wavelength
Cell Scoring analysis journal was used to quantify the dif-
ferentiation index (% differentiation) using automated
counts of the total number of DAPI-stained nuclei per
field (DAPI; wavelength (W) 1) and the percentage of W1
counts located within a sarcomeric myosin (MF20)-posi-
tive cell body (Alexa Fluor 488; W2). Global linear adjust-
ments to image fluorescent signal brightness/contrast
were made to all pixels within an image in ImageJ soft-
ware in representative images.

Preparation of C2C12 Hi-C libraries
Hi-C libraries were prepared as described previously
[43], with minor modifications (Additional file 2). For
the preparation of the Hi-C libraries, cells were grown in
T-75 flasks. Two biological replicates of the C2C12 myo-
blasts, myotubes and AraC-treated myotubes were pre-
pared from C2C12 cells obtained from different source
vials seeded on different days.

Hi-C data analysis
Mapping of the Hi-C libraries and generation of QC reports
We used HiCUP (hicup_v0.5.3) (http://www.bioinforma-
tics.babraham.ac.uk/projects/hicup/) pipeline to analyse
the Hi-C libraries. The pipeline was fed with the forward
and the reverse reads generated from the sequencing for
each of the six libraries. Sequencing reads were mapped
to the reference genome (Mus_musculus_GRCh38)
using bowtie aligner to generate BAM files. BAM files
obtained this way have the corresponding forward and
reverse reads of a sequenced DNA fragment mapped to
the reference genome as a pair (di-tag). The choice to
use HiCUP software for Hi-C data mapping was moti-
vated by the ability of the pipeline to execute a variety of
filtering steps (e. g. removal of contiguous sequences,
wrong size, re-ligation, same fragment-internal, same

fragment-dangling ends, same fragment-circularized).
Additionally, the HiCUP pipeline provides summary sta-
tistics for each stage of data processing, enabling precise
identification of potential problems regarding the quality
of the Hi-C libraries.

Hi-C analysis
We employed the HOMER Hi-C software pipeline
(http://homer.ucsd.edu/homer/interactions/index.html)
[55] and HiCUP pipelines to generate interaction matri-
ces, to perform identification of A and B compartments
and to determine significant interactions (Additional file 2).
Venn diagrams were plotted using R (‘Vennerable’

package) [56].

RNA extraction
C2C12 cells were differentiated in 12 W Multiwell Plates
(Greiner bio-one, 665180, 1 mL media/well) for RNA ex-
traction. RNA was extracted using Trizol (Invitrogen)
and RNAeasy Mini Kit (Qiagen) (Additional file 2). RNA
purity was evaluated by NanoDrop (ND-1000 spectro-
photometer; 260/280 and 260/230 ratios). Equal RNA
amounts extracted from three separate wells were com-
bined (5 μg total) to form a representative RNA sample.
RNA integrity was determined using an Agilent RNA
6000 Nano Kit on an Agilent 2100 Bioanalyzer Instru-
ment. The RNA integrity number (RIN) was consistent
with high-quality RNA and ranged between 9.4 and 10.
RNA samples (500 ng) were run on an agarose gel (1%
(w/v)) to confirm the absence of DNA. Paired-end
sequencing reads were generated by sequencing on an
Illumina (HiSeq 2500) platform (BGI).

RNA-seq data analyses
Sequenced RNA reads had Phred quality scores ≥ 24 and
were not trimmed (http://www.bioinformatics.babraha-
m.ac.uk/projects/fastqc/). Genes that were differentially
expressed were identified using TopHat (TopHat v2.0.9)
(http://ccb.jhu.edu/software/tophat/index.shtml) and Cuf-
flinks (cufflinks v2.1.1) [57]. Paired RNA reads were aligned
to a reference genome (UCSC-mm10.fa) and the splice
sites of the genes identified by providing a reference tran-
scriptome (UCSC-mm10.gtf file) in TopHat (with parame-
ters -r 200 -p 32). Significantly differentially expressed
genes were identified using the Cuffdiff function of the
Cufflinks package. Transcript levels were plotted as log10
of the fragments per kilobase of transcript per million
mapped reads (FPKM) values +1 using ‘cummerbund’
package from R [56].

GO analyses
Genes that fell within the top or bottom 10% of the sig-
nificantly differentially expressed transcript levels were
subjected to term enrichment analysis for ‘biological
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process’ using GOTermFinder (http://go.princeton.edu/
cgi-bin/GOTermFinder [58]. The p value cut-off was set
at 0.05 and gene lists queried against the Mouse Gen-
ome Informatics (MGI) database.

KEGG pathway analyses
Differentially expressed genes were queried against
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways using DAVID (the database for annotation,
visualization and integrated discovery) [59] with default
parameters.

Results
Morphological characterization of differentiated muscle
cells
C2C12 cells were differentiated into myotubes (Fig. 1a)
as evidenced by (1) the presence of sarcomeric myosin
and (2) mitochondrial networks on days 3 and 7 follow-
ing the medium switch (Fig. 1b). The percentage of dif-
ferentiation was calculated by counting the number of
DAPI-stained nuclei located within the myosin positive
cell body, from nine randomly pre-selected fields of view
(Additional file 3: Figure S1). The total number of DAPI
staining nuclei counted within each field of view de-
creased from that observed at confluence (i.e. 2704). Fol-
lowing the addition of AraC, the total nuclei per field
(i.e. 1303; Additional file 3: Figure S1A) decreased fur-
ther with the loss of residual myoblasts. In contrast, the
percentage of nuclei located within the myosin positive
cell body (i.e. the percentage of differentiation) showed a
statistically significant increase (p < 0.05, one-way
ANOVA) to 76.2% over the 7-day culture period (Add-
itional file 3: Figure S1). Notably, there was no signifi-
cant difference in the percentage of differentiation
between day 5 (81.7%), where myotubes reached their
maximum percentage of differentiation, and day 7
(76.2%) cultures. Thus, we concluded that there was lit-
tle morphological difference between myotubes on day 5
or day 7 differentiation.

Global transcriptome changes were consistent with
muscle differentiation
Total RNA was extracted from myoblasts, myotubes and
AraC-treated myotubes and sequenced to determine dif-
ferences in the whole transcriptome expression profiles.
The RNA integrity numbers (RIN) for the RNA samples
ranged between 9.45 and 10 (Additional file 1: Table S2).
High-throughput sequencing data from myoblasts, myo-
tubes and AraC-treated myotubes generated between
7,669,926 and 7,972,981 100 bp paired reads for the indi-
vidual replicates (Additional file 1: Table S2). Ninety-two
percent of the reads mapped to the mouse reference
genome, consistent with the sequenced RNA libraries
being of high quality. Moreover, the high correlation in

FPKM values between the biological replicates (r = 0.98
and 0.99, Additional file 3: Figure S2) for all genes tested
was consistent with high reproducibility.
Differentially expressed genes were determined using

Cuffdiff (Additional file 4 and Additional file 6). There
was significant upregulation of muscle regulatory factors
including myogenin (i.e. Myog) and muscle-specific
genes (i.e. Acta1, Myh1, Myh2, Myh4 and Tnnt1) in the
myotubes relative to myoblasts (Fig. 1c; Additional file 4
and Additional file 6). The observed increase in expres-
sion for all muscle-specific genes that were tested con-
tinued following AraC treatment of the myotubes. These
observations were consistent with those of Trapnell et
al. who differentiated C2C12 myoblasts under similar
conditions to those used here (Additional file 5 and
Additional file 6) [57]. Collectively, our morphological
and transcriptional analyses were consistent with the
successful differentiation of C2C12 myoblasts into
myotubes.
A Gene Ontology (GO) analysis revealed significant

enrichment for terms related to muscle function and
muscle development in the top 10% of significantly up-
regulated genes during myotube development (Add-
itional file 1: Table S4 and Additional file 7). Similar GO
enrichment was observed in the AraC-treated myotubes
(Additional file 1: Table S5 and Additional file 8). In
contrast, a GO analysis on the 10% most downregulated
genes following myotube development or AraC treat-
ment of myotubes identified enrichment for GO terms
related to cell cycle and cell cycle regulation (Additional
file 1: Table S4 and S5).
AraC treatment of myotubes correlated with increases

in transcript numbers for genes that were related to
platelet-derived growth factor, response to stimulus and
response to cytokines (Additional file 1: Table S6).
Moreover, KEGG pathway screening [60] revealed sig-
nificant enrichment for genes in the cytosolic DNA-
sensing pathway (p = 0.049) due to the presence of the
Zbp1, Csp1 and Irf7 genes within the upregulated gene
set (Additional file 3: Figure S3). The set of the 10%
most significantly downregulated genes following AraC
treatment of myotubes was enriched for GO terms re-
lated to developmental process (Additional file 1: Table
S6). These results are consistent with the supposed
mode of action of AraC, specifically its incorporation
into newly synthesized DNA [45–49] leading to the ter-
mination of DNA elongation, DNA fragmentation [50]
and, eventually, cell death in growing cells.

Global genome structure was similar between myoblasts
and myotubes
The 3D structure of the genome reflects the underlying
nuclear processes, including transcription, that are active
in the cell. Therefore, we used the ‘diluted’ Hi-C method
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[43] to capture the 3D organization of the genome in
myoblasts, myotubes and AraC-treated myotubes, in two
biological replicates. Between 188 × 106 and 292 × 106,
150 bp paired-end reads were sequenced per library. Se-
quenced reads were mapped to the mouse reference
genome (mm10) using HiCUP [61].
The quality of the Hi-C libraries was checked in

HiCUP. Statistics on (1) read alignment, (2) percentage
of artefacts and (3) distribution of distances between in-
dividual tags (Additional file 1: Table S7) were consistent
with high-quality Hi-C libraries (Additional file 3: Figure
S4–S9). There was a high number of duplicated di-tags
identified during library processing. High numbers of
duplicated di-tags do not affect the quality of the Hi-C
libraries; however, deduplication resulted in a decrease
in the total number of unique di-tags to 19–45 million

for the different replicates and limits the resolution of
the subsequent analyses to 400 kb. Thus, analyses of
changes in the 3D organization of the genome were lim-
ited to 400 kb genomic blocks and could not be attrib-
uted to individual mouse genes, which are ~62 kb in size
on average.
Interaction matrices were generated for each replicate

at 500 kb resolution in HOMER [55]. Interaction matri-
ces for biological replicates were highly correlated: myo-
blasts, r = 0.8; myotubes, r = 0.93; and AraC-treated
myotubes, r = 0.90 (Additional file 1: Table S8). Given
the high reproducibility between biological replicates,
Hi-C libraries for the biological replicates were pooled.
The total number of valid di-tags in the pooled libraries were
as follows: myoblasts–36,390,904; myotubes–46,407,229;
AraC-treated myotubes–29,634,069. Interaction matrices

Fig. 1 Myoblasts were successfully differentiated into myotubes. a Muscle progenitor cells (myoblasts) were differentiated into myotubes in presence of
differentiation media. This cell population was predominately comprised of myotubes although there were some myoblasts present. AraC treatment of the
myotubes was undertaken to remove undifferentiated myoblasts. b Double immunostained images of cells harvested at different stages of myogenic
progression. The AraC treatment resulted in the apparent removal of the myoblasts from the terminally differentiated myotubes as evidenced by the
presence of cell-free patches in the AraC-treated cultures. Cells were immunostained for myosin (green), nuclei (blue) and mitochondria (red). c Myog and
other skeletal muscle-specific genes (Acta1, Myh1, Myh2, Myh4, Tnnt1) are markedly upregulated in the myotubes with and without AraC treatment when
compared to myoblasts. This indicates successful differentiation at the level of muscle-specific molecular markers. Transcript levels are shown as the mean
of the log FPKM for the biological repeats ± SE
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(400 kb resolution) were generated from the pooled bio-
logical replicates. The interaction matrices were highly corre-
lated (i.e. myoblasts–myotubes, r= 0.83; myoblasts–AraC-
treated myotubes, r= 0.78; myotubes–AraC-treated myo-
tubes, r= 0.93; Pearson correlation). All analyses were per-
formed on the pooled matrices unless otherwise stated.

There were extensive A/B compartment switches for
specific genomic regions
The identification of A and B compartments is a standard
procedure for the analysis of Hi-C data and represents the
application of a principal component analyses of the inter-
action matrices [34, 38, 42, 43, 62, 63]. A and B compart-
ments have been previously shown to correspond relatively
well to active and inactive genomic regions [43, 64].
Genomic regions which have positive values for the first
principal component (PC1) represent the A (active) com-
partment, and genomic regions which have negative PC1
values represent the B (inactive) compartment [43].
We evaluated the degree of plasticity of the A and B

compartments during myotube development and found
that 8% of the genome changed compartment residence
(Fig. 2a, b; Additional file 9). Switching from an A to B
compartment during differentiation was significantly
correlated (p < 0.001) with a decrease in gene expression
levels (Fig. 2c), consistent with previously published ob-
servations in mammalian cells during cell differentiation
[38, 42] or de-differentiation [65, 66]. However, while re-
locating from the B to A compartment was generally as-
sociated with an increase in expression, this was only
significant in comparisons between the AraC-treated
myotubes and myoblasts (Fig. 2c). Notably, changes be-
tween A and B compartments did not correlate with
changes in expression levels, on the global scale, for
comparisons between the AraC-treated myotubes and
myotubes (Fig. 2c). Critically, the relative compartment
changes between the AraC-treated myotubes and myo-
tubes were similar to those observed when these cells
were compared to myoblasts (Fig. 2b). Moreover, 2126
genes were significantly differentially expressed between
these cell stages despite their gross phenotypic similarity
(Fig. 1). Thus, these results indicate that localization
within a particular compartment (i.e. A or B; eu- or
heterochromatin) does not automatically dictate expres-
sion levels.
Correlation analyses can be used to identify genomic

regions that change their interaction profiles and not
just their PC1 values [55]. Central to this analysis is the
fact that negatively correlated regions (i.e. r < 0) interact
with different partners in two conditions. Fifty-five
genomic regions (400 kb) were negatively correlated fol-
lowing development of myotubes from myoblasts (Add-
itional file 10). The transcription start sites (TSS) falling
within the boundaries of these negatively correlated

regions were identified using HOMER and divided into
two groups: (1) TSSs whose PC1 values reduced from
one condition to the next or (2) TSSs whose PC1 values
increased from one condition to the next. The transcript
levels of the genes that corresponded to the TSSs in each
pool were determined from the transcription data. The
differentiation of myoblasts to myotubes resulted in a
significant decrease (p < 0.001 paired Wilcoxon test) in
the transcript levels of 90 genes that were associated
with 199 TSSs that had reduced PC1 values (Fig. 3a). In
contrast, the 59 genes that were associated with the 112
TSSs that increased their PC1 values (became more
open) also significantly increased their transcript levels
(i.e. they were upregulated; p < 0.01 paired Wilcoxon
test; Fig. 3b; Additional file 11). GO analysis identified
enrichment for ‘nucleosome assembly’ and ‘chromatin
assembly’ (p < 0.01; Additional file 1: Table S7) within 11
of the 90 downregulated genes which, with the exception
of Cebpg (chr7:35046422–35056573), encoded histone
proteins and were located within patch three of the
HIST1 cluster on chr 13 (23,600,000–24,000,000 bp).
Notably, the Hist1h2bc, Hist1h1c and Histih1a genes
within patch three of HIST1 were upregulated upon
myotube differentiation (Additional file 4 and Additional
file 11). Treatment with AraC resulted in differential ex-
pression of specific replicative histone variant genes
within the HIST1 cluster. The detection of transcripts
that were not previously present (Additional file 1: Table
S1) is consistent with the observed changes in expres-
sion occurring within the differentiated myotubes and
not simply reflecting a change in the population struc-
ture (i.e. level of differentiation; Additional file 3: Figure
S1). Consistent with the observations by Li et al. [67],
the three patches within the HIST1 locus were spatially
clustered (Additional file 3: Figure S10). Interestingly,
there were only minimal differences in this inter HIST1
clustering between the myotubes and myoblasts indicat-
ing it was not responsible for the negative correlation
for interactions in this region between the cell types.
The AraC treatment of myotubes resulted in increases

to the PC1 values at 41 TSSs. These 41 TSSs overlapped
with 24 genes from the transcriptome data (Fig. 3c and
Additional file 1: Table S11). Interestingly, there was a
non-significant decrease in the overall transcript levels
of these 24 genes (Fig. 3c). A GO enrichment of the 24
genes identified an association with pyroptosis (p < 0.01;
Additional file 1: Table S12). Notably, the genes found in
the pyroptosis GO-enriched term are encoded as a multi-
gene family contained within 400 kbp region located on
chr13:100,000,000–100,400,000 in the mouse genome.
The top 10% most upregulated and downregulated

transcripts (Additional file 7 and Additional file 8) were
underrepresented in the negatively correlated genomic
regions. Consistent with this, the genomic regions
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flanking the 10% most up- and downregulated genes
during myogenesis, or treatment with AraC, were
enriched for positive PC1 values (Fig. 4). This suggests
that the most upregulated and downregulated genes res-
ide within the A compartment during differentiation and
AraC treatment of muscle cells.

Topologically associating domain boundaries
TADs that were conserved between myoblasts, myotubes
and AraC-treated myotubes were identified using the
Armatus algorithm [68]. Pairwise comparisons show that
the numbers of conserved TADs between myotubes and
myoblasts were 59 and 57%, respectively (Additional file
3: Figure S11). This result is consistent with earlier

findings [38, 39, 66] and the degree of similarity of do-
main boundaries reported between mouse embryonic
stem cells and adult mouse cortex (53.4 and 84%, re-
spectively; [39]); proliferating mouse embryonic stem
cells and intermediate neuronal precursor cells (78%;
[38]); intermediate neuronal precursor cells and post-
mitotic neurons (80%; [38]); and proliferating mouse
embryonic stem cells and post-mitotic neurons (74%;
[38]); and between human cells [39, 42].

Gene clustering
We hypothesized that muscle-specific genes themselves
may associate upon muscle differentiation in our in vitro
model system for myogenesis. We used HOMER to

Fig. 2 Switches between the A and B compartments were observed in pairwise comparisons between the cell populations. a The PC1 values defined
using the Hi-C correlation matrices of the three conditions for chr 7 are plotted on the UCSC genome browser. Examples of local changes in the PC1
values between the three conditions are marked with red arrows. b Myogenesis is accompanied by significant changes in chromosome topology evident
from the fact that 25% of the genome changed compartment status in at least one of the conditions. Comparisons are done only for bins which have
detectable PC1 values in the three conditions (6284 bins in total). c Genes which changed from residing in A compartment to B compartment reduced
their average expression levels, whereas genes which changed from residing in B compartment to A compartment increased their average expression
levels for myotube-myoblast and AraC-treated myotube-myoblast comparisons. (p values by Wilcoxon test, outliers not plotted). Genes which have
expression change of 0 are excluded from the analyses
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Fig. 3 Distribution of transcript levels of genes residing within the confines of the negatively correlated interacting regions in pairwise condition comparisons.
Transcript levels (expressed as FPKM) of genes whose a TSSs had reduced PC1 values and b TSSs showed increases in PC1 values within negatively correlated
interacting regions in myotubes vs myoblasts comparison. c Transcript levels of genes whose TSSs showed increases in PC1 values within negatively correlated
interacting regions in AraC-treated myotubes vs myotubes comparison. Genes which had FPKM values equal to 0 in both conditions are excluded from the
analyses; however, genes having FPKM value equal to 0 in one of the conditions and detectable FPKM value in the other condition are
included (p values–paired Wilcoxon test, p < 0.001***, p = 0.01**, NS not significant). Outliers not plotted

Fig. 4 PC1 values across the 10% most upregulated and downregulated genes in comparisons of a myotubes vs myoblasts and b AraC-treated
myotubes vs myotubes. The average PC1 enrichment per 1000 bp bin for the total number of genes in the groups is plotted ±500 kb of the gene
TSS. The genomic regions encompassing the upregulated and downregulated genes, for each pairwise comparison, are enriched for positive PC1
values (e.g. reside in A compartment)
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evaluate clustering of the genes (10%) that had the most
upregulated and downregulated transcript levels during
myotube differentiation. The top 10% of upregulated
genes were significantly clustered in all conditions and
the log2 enrichment ratio increased from myoblasts
(0.53) to myotubes (0.72; Fig. 5). Consistent with this,
there was significant clustering of genes that are in-
volved in muscle cell development (p < 0.001), and again,
the level of enrichment increased with myotube differen-
tiation (myoblasts, 0.65; myotubes, 0.75; AraC-treated
myotubes, 0.76; Additional file 12). Interestingly, the
10% most downregulated genes were also significantly
clustered (p < 0.001; Fig. 5) in all conditions; however,
the log2 enrichment value gradually decreased with de-
velopment from myoblasts (0.49) to myotubes (0.43) to
AraC-treated myotubes (0.37). Again, genes that were
annotated as being involved in the ‘mitotic cell cycle’
showed a gradual decrease in clustering with the pro-
gression of cell differentiation (enrichment ratio; myo-
blasts 0.63; myotubes 0.52; and AraC-treated myotubes
0.42, (Additional file 12).
Consistent with our earlier observations that the up-

and downregulated genes were present in the A (euchro-
matic compartment), we observed significant clustering
of the top 10% downregulated and upregulated genes in
myoblasts (enrichment ratio 0.8; p < 0.001). Notably,
genes which had no detectable expression in myotubes

(10101 genes; Additional file 13) showed low yet signifi-
cant (p < 0.001) non-increasing levels of clustering
(enrichment ratio; myoblasts 0.05; myotubes 0.05; Add-
itional file 13) and association with muscle-specific
genes (enrichment ratio; myoblasts 0.19; myotubes 0.15;
Additional file 13). Collectively, our observations are
consistent with genes that are differentially regulated
during myotube development being clustered in the pro-
genitor cell line.

Associations with epigenetic modifications
Remodelling of the epigenetic landscape (e.g. H3K4me2,
H3K4me3, H3K27me3) and changes to Pol II loading
have been previously shown to accompany myogenesis
[53]. We determined the relationship between the chro-
matin marks, significant chromosomal interactions, and
developmentally regulated genes using HOMER and
published epigenetic data [53] (Fig. 5; Additional file 14).
TADs flanking gene arrays experiencing transcriptional
upregulation during differentiation show enrichment for
histone marks peculiar for open chromatin and were de-
void of histone marks peculiar for compact chromatin
(Additional file 3: Figure S12) consistent with previous
observations [53, 69]. Overall, the muscle-specific genes
showed high levels of clustering with genomic regions
that were modified by the epigenetic features that were
tested before and after differentiation into myotubes

Fig. 5 Pairwise feature enrichment at the ends of the significant interactions in a myoblasts, b myotubes and c AraC-treated myotubes. The top 10% and
bottom 10% differentially expressed genes from the myotube-myoblast comparison were tested for enrichment in their associations with epigenetic marks
for Pol II, H3K4me2, H3K4me3 and H3K27me3 through significant interactions in all three conditions. The enrichment is normalized to the expected number
of associations through significant interactions calculated by HOMER, and the corresponding p value is calculated by Wilcoxon signed-rank
test (p < 0.001***, p < 0.01**, p < 0.05*)
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(Fig. 5). Cell cycle-specific genes also clustered with gen-
omic regions harbouring active chromatin histone marks
(i.e. H3K4me2, H3K4me3; Fig. 5). This association may
be explained by the relatively high retention of these
genes within the A (i.e. euchromatic) compartment in
myotubes after differentiation and downregulation of
these genes (Fig. 4).
There was a decrease in enrichment for interactions

that involved associations between the up- and downreg-
ulated genes and regions enriched for Pol II upon differ-
entiation to myotubes (Fig. 5). While apparently
counterintuitive, the observed decrease in Pol II density
at upregulated genes is consistent with (1) a halving in
Polr2a transcript levels in myotubes (FPKM= 32.8359)
when compared to myoblasts (FPKM = 66.7834) and (2)
release of Pol II from pause sites within genes.

Discussion
We captured the structure of the genome and transcrip-
tome in myoblasts and myotubes using Hi-C and RNA-
seq. We observed that the captured genome structures
of myoblasts and myotubes were highly correlated, yet
there were developmental changes, consistent with pre-
vious observations of reduction of the degrees of free-
dom in genome structure with increasing commitment.
Notably, the 10% most upregulated and downregulated
differentially expressed genes upon myotube develop-
ment were enriched for A compartment (i.e. euchroma-
tin) residence and demonstrated significant clustering
with other genes that show muscle-specific transcription.
Finally, myotubes treated with AraC exhibited changes
to the transcript levels and 3D genome organization of
sets of genes that were all involved in the same bio-
logical process—pyroptosis, a form of inflammatory pro-
grammed cell death due to infection.
Histone genes are organized in three multigene com-

plexes (HIST1-3) in the mouse genome with the HIST1
cluster on chromosome 13 being the largest [70]. We
observed a developmental switch in genome structure
and altered regulation of histone genes within a 400 kb
bin on chr13 (23,600,000–24,000,000) that contains the
subset of 16 replication-dependent histone genes, in-
cluding Hist1h1t, that comprise patch three from Hist1
[71]. Consistent with previous observations, the histone
gene patches within the HIST1 cluster on chromosome
13 form a multigene cluster that may help coordinate
gene expression [67]. The dogma has been that the
expression of replication-dependent histones comprising
the histone core (H2A, H2B, H3 and H4) is globally
downregulated upon cell differentiation as the main
‘consumer’ of histones is newly synthesized DNA [70,
72]. Superficially, such an interpretation would be con-
sistent with our observations as cell differentiation to
myotubes corresponds with withdrawal from the cell

cycle [73]. However, not all of the histone genes within
patch three were downregulated. Specifically, HisIh2bc,
Hist1h1a and HistIh1c were upregulated during develop-
ment of myotubes. The upregulation of both Hist1h1a
and HistIh1c may reflect the role of histone H1 in chro-
matin condensation and the reprogramming of hetero-
chromatic regions we observed. This agrees with recent
studies that have shown differential expression of his-
tone variants from within HIST1 and HIST2 during de-
velopment and in senescent mouse neurons [74]. Higher
resolution analyses of the chromatin structural changes
that occur within patch three of the HIST1 cluster, using
either paused and elongating Pol II-specific ChiA-Pet
[75] or circular chromosome conformation capture [76],
would help to understand the regulatory cascade that is
controlling histone variant expression in differentiated
myotubes. The significance of this finding as a mechan-
ism for developmentally significant or post-replication
targeting of transcriptional regulation in myotubes re-
mains to be determined. However, the observation that
AraC treatment caused additional changes demonstrates
that environmental signals can change the patterns of
replicative histone expression in differentiated myotubes.
The importance of this should not be underestimated
given that (1) replication-dependent canonical histone
variants undergo specific and rapid exchange during
physiological processes (e.g. spermatogenesis (reviewed
in [77]); (2) variants in histone H3 have been linked to
regulation of gene selection and lineage potential [78];
and (3) mutations in histones have been linked to
various developmental disorders and human diseases
[77]. Moreover, there are some clear similarities to the
control of the developmentally regulated HOX genes
(reviewed in [79]). Thus, we propose that investigating
these replicative histone variants may help improve our
understanding of alterations to gene expression in
muscle disorders.
We observed plasticity with respect to the retention of

genomic sequences within the A (i.e. euchromatic) and
B (i.e. heterochromatic) compartments irrespective of
their transcriptional status. However, consistent with
earlier observations, not all genes that were present
within regions that changed from A to B compartments,
or vice versa, significantly changed transcript levels [42,
66]. Thus changing from euchromatic to heterochro-
matic compartments might not in all cases reflect the
immediate gene expression state. Despite this, correlated
changes between the nuclear architecture and transcript
levels of genes were observed. For example, AraC treat-
ment of myotubes resulted in two forms of changes
within a single metabolic pathway (i.e. pyroptosis) which
involved coordination of (1) changes to the chromatin
compartmentalization and transcript levels (e.g. Naip5,
Naip2 and Naip6 that were located in a negatively
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correlated region on chr13 [100 × 106−100.4 × 106]) and
(2) changes to transcript levels for genes (i.e. Zbp1, Csp1
and Irf7) that were independent of changes to
compartmentalization remaining in the A (euchromatic)
compartment, at the resolution level used here. As such,
in this study, we observe a response of the genome
structure and transcription to external stimuli, namely,
the AraC drug treatment. Numerous studies have shown
a link between relatively rapid alterations of the nuclear
architecture as a response to external stimuli including
(a) thalidomide-dependent alteration of chromatin
supra-organization in drug-resistant myeloma cells [80];
(b) marked ribosomal DNA (rDNA) chromatin decon-
densation and a significant increase in ribosomal gene
expression in rye cells subjected to high-temperature
stress [81]; and (c) bursts of action potential in cultured
hippocampal neurons that cause remodelling of the nu-
cleus to obtain ‘unfoldings’ which are thought to im-
prove the cellular response to calcium signalling [82]. A
possible outcome of the overlapping responses in 3D
organization and transcription could be increased cell
adaptation to the changed environmental cues. With re-
spect to the AraC-dependent induction of the ‘pyropto-
sis’ genes and activation of the Naip cluster, in case the
stimuli persists, could have resulted from the formation
of a co-regulated multigene cluster. However, studies of
genome conformation are statistical and associational
and reveal general tendencies. Thus, it should be re-
membered that AraC kills dividing cells and, in addition
to a direct effect on the structure of the genomes in the
treated myotubes, the observed changes could also result
from the changes to the population structure (i.e. the ra-
tio of myotubes/myoblasts). While the observed effects
are unlikely to be solely due to changes in population
structure, additional studies are required to untangle the
effects of AraC.
Our observation of reducing TAD conservation with

increasing differentiation in mouse cells is consistent
with that of Fraser et al. who associated the decreasing
trend with a partial reorganization of TADs during dif-
ferentiation [38]. This in no way contradicts the general
observation of a trend for the preservation of TADs be-
tween different mammalian cell types [39], during mam-
malian cell differentiation [38], and during mammalian
cell senescence [62, 63]. It is possible that the reason
why the levels of conservation we observed were to-
wards the bottom of the published range is due to (1) a
biological phenomenon related to the formation of the
myotubes which are syncytial cells or (2) the choice of
algorithm and absolute conservation of boundary
position which we used in our study [68]. Single nuclei
approaches [83] could be employed to isolate nucleus-
specific effects due to the formation of a syncytium and
to confirm the cell-specific remodelling of TADs. This

would have important consequences for our understand-
ing of the role of TADs as units structuring the folding
of the genome.
The genome and nucleus collectively form a con-

strained system that is maintained on the boundary of
order and chaos [84]. Within this constrained system,
genomes are interleaved entities [85] that are spatially
organized into hierarchically organized domains of dif-
ferent sizes (e.g. chromosome territories and topologic-
ally associated domains) [38, 39]. Moreover, our
observations of clustering within the 10% most up- and
downregulated genes, which were enriched for residence
within the A compartment, are consistent with co-
regulation through the formation of multigene clusters
[67], some of which (e.g. muscle cell developmental
genes) were already present in the myoblasts. The bio-
logical reason for this association remains unknown, but
it is possible that the association between muscle-
specific genes and cell cycle-specific genes acts as a form
of ‘crosstalk’ between the cell cycle-specific genes and
muscle-specific genes. This is consistent with the known
tight coupling between cell proliferation and differenti-
ation [86–88]. Interestingly, it has been recently shown
that cell division is a necessary prerequisite for establish-
ing changes in nuclear architecture during myogenesis
in human cells [69]. Furthermore, the concomitant
expression of these two groups of genes is generally re-
ciprocal [10, 11], and the ‘crosstalk’ in terms of interac-
tions may contribute to such reciprocity. Conversely,
muscle-specific genes may occupy a nuclear location
close to already recruited transcription machinery (cell
cycle-specific genes are highly expressed in myoblasts),
which could contribute to increased efficiency of
muscle-specific genes transcription once the stimuli for
their upregulation is present (e.g. expression of MRFs).
This is similar to the active re-location of Myc and Fos
genes to pre-assembled transcription factories upon
induction of mouse B cells [89].
Chromatin organization and gene control are hierarch-

ical, and epigenetic modifications are widely considered
to make a significant contribution to the environment
within which genes are regulated. Epigenetic modifica-
tions have been shown to cluster in mammalian nuclei
[39, 43, 90, 91] and on muscle-specific genes in myo-
blasts and myotubes [53]. Our results are consistent with
this. Interestingly, we noted an enrichment of both ac-
tive and inactive epigenetic marks with the up- and
downregulated genes. This is consistent with observa-
tions that these epigenetic modifications act in a
combinatorial nature and are not individually indicative
of active or inactive chromatin regions [92]. From a
biological perspective, it is possible that this spatial co-
localization of different epigenetic marks at the muscle
cell developmental and cell cycle genes contributes to
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the relatively easy reversibility [93, 94] and very fine bal-
ance within the expression program that separates the
differentiation and de-differentiation state in cultured
muscle cells. In this scenario, the enrichment of the cell
cycle-specific genes in the ‘A’ compartment may there-
fore reflect the ‘readiness’ of the cell cycle-specific genes
to be activated upon the presence of the right transcrip-
tion cues.

Conclusions
Our observations are consistent with the precursor
C2C12 cell lines being myogenic, i.e. pre-programmed
for development into myotubes [54], and having already
undergone a degree of genome structural limitation.
Moreover, there is extensive evidence for chromatin
structure playing a part in the programmed expression
of replication-dependent histones following exit from
the cell cycle. Finally, this study provides evidence for
muscle cell-specific responses to environmental stimuli
mediated through a chromatin structure mechanism.
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