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Developmental myosins: expression
patterns and functional significance
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Abstract

Developing skeletal muscles express unique myosin isoforms, including embryonic and neonatal myosin heavy
chains, coded by the myosin heavy chain 3 (MYH3) and MYH8 genes, respectively, and myosin light chain 1
embryonic/atrial, encoded by the myosin light chain 4 (MYL4) gene. These myosin isoforms are transiently
expressed during embryonic and fetal development and disappear shortly after birth when adult fast and slow
myosins become prevalent. However, developmental myosins persist throughout adult stages in specialized
muscles, such as the extraocular and jaw-closing muscles, and in the intrafusal fibers of the muscle spindles. These
myosins are re-expressed during muscle regeneration and provide a specific marker of regenerating fibers in the
pathologic skeletal muscle. Mutations in MYH3 or MYH8 are responsible for distal arthrogryposis syndromes,
characterized by congenital joint contractures and orofacial dysmorphisms, supporting the importance of muscle
contractile activity and body movements in joint development and in shaping the form of the face during fetal
development. The biochemical and biophysical properties of developmental myosins have only partially been
defined, and their functional significance is not yet clear. One possibility is that these myosins are specialized in
contracting against low loads, and thus, they may be adapted to the prenatal environment, when fetal muscles
contract against a very low load compared to postnatal muscles.
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Review
Introduction
Sarcomeric myosins present in mammalian striated
muscle are class II or conventional myosins, each my-
osin molecule consisting of two heavy chains (MyHCs),
two essential light chains (MLCs), and two regulatory
MLCs. Both MyHCs and MLCs are present in different
isoforms encoded by different genes. A total of 11
MyHCs is coded by 6 myosin heavy chain (MYH) genes
which are widely expressed in body muscles and 5 other
genes with limited expression in specialized skeletal
muscles. Five essential MLCs are coded by four myosin
light chain (MYL) genes, and two regulatory MLCs by
two other MYL genes (Table 1) (see [1]). Most of these
genes are also expressed in the developing skeletal
muscle, including two MyHC isoforms, called embryonic
* Correspondence: stefano.schiaffino@unipd.it
1Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2, 35129
Padova, Italy
Full list of author information is available at the end of the article

© 2015 Schiaffino et al. This is an Open Acces
License (http://creativecommons.org/licenses/
medium, provided the original work is proper
creativecommons.org/publicdomain/zero/1.0/
and neonatal (or perinatal) myosins, coded by MYH3
and MYH8, respectively, and myosin light chain 1
embryonic/atrial, coded by the MYL4 gene, which are
present at high levels in the initial stages of muscle
development, are downregulated after birth, and are re-
expressed during muscle regeneration. Here, we review
the pattern of expression of myosin genes during muscle
development, focusing especially on embryonic and neo-
natal MyHCs. In addition, we discuss the human path-
ologies due to mutation of MYH3 and MYH8 and the
unsettled question of the functional significance of these
myosins.
Identification of developmental myosins in mammalian
skeletal muscle
A number of studies in the 1960s and 1970s reported
biochemical evidence suggesting that myosins isolated
from mammalian embryonic or fetal skeletal muscle
differ from adult muscle myosins (see references in
[2, 3]). However, Whalen et al. [2] were the first to
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Table 1 MYH and MYL genes expressed in developing mammalian skeletal muscle

Protein Gene Expression in developing muscle Expression in adult muscle

Myosin heavy chainsa

MyHC-emb MYH3 Embryonic and fetal muscle Specialized musclesb

MyHC-neo MYH8 Embryonic and fetal muscle Specialized musclesb

MyHC-slow MYH7 Embryonic and fetal muscle Type 1 muscle fibers and ventricles

MyHC-2A MYH2 Fetal (human) or early postnatal (mouse) muscle Type 2A muscle fibers

MyHC-2X MYH1 Late fetal (human) or early postnatal (mouse) muscle Type 2X muscle fibers

MyHC-2B MYH4 Postnatal muscle Type 2B muscle fibers

Essential myosin light chainsc

MLC-1fastd MYL1 Embryonic muscle Fast muscle

MLC-3fastd MYL1 Fetal muscle (mouse: after E15) Fast muscle (2B > 2A)

MLC-1emb/atrial MYL4 Embryonic muscle, heart Atria

MLC-1sb MYL3 Fetal muscle (mouse: after E15) Slow skeletal muscle and ventricles

MLC1-sa MYL6B Fetal muscle (human) Slow skeletal muscle, not ventricles,
in human, not mouse

Regulatory myosin light chains

MLC-2fast MYLPF Embryonic and fetal muscle Fast muscle

MLC-2slow MYL2 Embryonic and fetal muscle Slow muscle and ventricles
aOther five MyHCs coded by genes with limited expression in specialized skeletal muscles (MYH6, MYH7b, MYH13, MYH15, and MYH16) are not considered in this
Table (see [1])
bExtraocular, masticatory, laryngeal muscles, and muscle spindles
cAn additional MLC, coded by the MYL6 gene, which is normally expressed in smooth muscle and non-muscle cells, is detectable in human fetal muscle and
human cultured muscle cells [50]. However, it is not clear whether this MLC is associated to sarcomeric myosins
dSplicing product of the MYL1 gene
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provide unambiguous evidence for the existence of dis-
tinct developmental myosins. They identified two specific
MyHCs, called embryonic and neonatal (also called peri-
natal) MyHCs, hereafter referred to as MyHC-emb and
MyHC-neo, which precede the appearance of adult fast
myosins in the developing rat skeletal muscle [2]. The cor-
responding MYH genes were identified [4, 5] and found to
be located in the same chromosomal locus as gene coding
for adult fast myosin heavy chains on chromosome 11
(mouse) or 17 (human) [6]. The gene coding for MyHC-
neo (MYH8) shows considerable sequence similarity with
adult fast MYH genes, whereas the gene coding for
MyHC-emb (MYH3) is quite different (see [7] for a com-
parative sequence analysis of MYH genes). Embryonic
skeletal muscles also contain a unique type of essential
MLC, MLC-1emb, encoded by the MYL4 gene, which is
also expressed in the developing heart and in adult atrial
myocardium but not in adult skeletal muscle [8, 9].

Developmental myosins in other vertebrates
Developmental myosins are also present in other verte-
brates, such as birds and fish, although the sarcomeric
myosin gene families are still incompletely characterized
in these species. The identification of developmental my-
osins in fish is complicated by the large number of my-
osin genes, resulting from whole-genome duplication
[10]. In the zebrafish embryo, diversification of fast and
slow muscle cell lineages occurs very early in develop-
ment, under the control of specific signaling pathways,
leading to regional specification of different fast and
slow MyHC isoforms. Three slow-type myosin genes,
smyhc1, smyhc2, and smyhc3, that form a tandem array
in the genome, show differential expression patterns,
with primary slow fibers predominantly expressing
smyhc1 and secondary slow fibers, which are formed
later in development, expressing smyhc2 and smyhc3
[11]. Six fast-type myosin genes, arranged as triple re-
peats located in a narrow region on opposite strands of
chromosome 5, also display distinct expression patterns
in the zebrafish embryo: the genes in group 1 (fmyhc1.1,
fmyhc1.2, and fmyhc1.3) are excluded from the tail and
the majority of the cranial muscle, whereas the genes in
group 2 (fmyhc2.1, fmyhc2.2, and fmyhc2.3) are highly
expressed in the cranial muscles [12].
In birds, three embryonic and one neonatal MyHC

have been identified in developing skeletal muscles
(reviewed by [13]). In addition, the myotome and the de-
veloping muscles in chick embryo contain three slow-
type MyHCs, referred to as SM1 (or MyHC1), SM2 (or
MyHC2), and SM3 (or MyHC3), SM3 being also
expressed in the atrial myocardium [13, 14]. Ventricular
MyHC is also transiently expressed in the embryonic
chick skeletal muscles and is re-expressed during muscle
regeneration [14]. The expression of slow-type MyHCs
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occurs in specific skeletal muscles independently of in-
nervation, as a result of the existence of distinct lineages
of myogenic precursors (see [15]). The switching from
developmental to adult isoforms also varies in different
chicken muscles: a complete switch from embryonic/
neonatal-to-adult fast MyHC occurs in the pectoralis
muscle, but most other muscles contain embryonic/neo-
natal isoforms as major components throughout adult
stages [13].

Embryonic and neonatal myosins during rat and mouse
muscle development
Embryonic and neonatal myosins have been especially
well characterized in developing rat and mouse skeletal
muscles. MyHC-emb and MyHC-neo transcripts have
been detected by in situ hybridization in the early devel-
opmental stages: in the mouse embryo, MyHC-emb is
first detected at 9.5 days post coitum (E9.5) and MyHC-
neo at E10.5 [16]. The upregulation of these genes is
apparently controlled by the activity of the myogenic
regulatory factors MyoD and Myf5, involved in muscle
commitment and differentiation, as the proximal pro-
moters of developmental myosin genes contain E-boxes
responding to MyoD and Myf5 [17, 18]. The developing
skeletal muscles also express a myosin indistinguishable
from the adult MyHC-slow, coded by MYH7, as deter-
mined by analyses at the protein and transcript level
[19]. Based on the pattern of reactivity of a number of
anti-myosin antibodies, it was suggested that the slow-
type MyHC isoforms present in the embryonic muscles
are actually different from those present in the adult
skeletal muscle [20]; however, this interpretation has not
been confirmed. It was also suggested that the slow-
tonic MyHC, first identified in the extraocular muscles
and intrafusal fibers of muscle spindles of the adult mus-
cles [21] and recently found to be coded by the MYH7b
gene [22], is a slow-developmental isoform widely
expressed in most embryonic muscles [23]. However,
MYH7b transcripts are present at very low levels in em-
bryonic mouse muscle at E12, and MYH7b protein is
not detected in embryonic and fetal muscle using a poly-
clonal antibody specific for the N-terminal domain of
MYH7b, except for rare fibers, first identified around
E20, destined to become the bag fibers of muscle spin-
dles (see [22]). In conclusion, available evidence indi-
cates that three MyHCs are present at the protein level
in the developing rat and mouse skeletal muscle:
MyHC-emb (MYH3), MyHC-neo (MYH8), and MyHC-
slow (MYH7). Immunohistochemical studies showed
that the pattern of expression of developmental myosins
varies in fibers formed at different developmental stages.
In rat primary generation fibers, MyHC-emb is co-
expressed with MyHC-slow [19, 24], whereas secondary
generation fibers express embryonic and neonatal
MyHCs [25]. At the later fetal stages, a number of
primary generation fibers tend to lose MyHC-slow and
acquire MyHC-neo reactivity, while a number of second-
ary generation fibers in slow muscles stain also for
MyHC-slow [25].
MyHC gene activation during embryonic myogenesis

is accompanied by parallel upregulation of MLCs and
other contractile protein genes. In situ hybridization
studies showed that the transcripts for MLC-1emb
(MYL4) are expressed together with MLC-1fast (the
major splicing product of the MYL1 gene) beginning in
the early developmental stages in the mouse embryonic
skeletal muscle; their relative levels are similar at E12.5
but MLC-1fast becomes predominant at E15.5 [16].
MLC-2fast (MYL3) transcripts are also present early in
mouse embryogenesis, with variable temporal and spatial
patterns of expression in different muscle groups
[26]. In contrast, transcripts for MLC-1slow/ventricular
(MYL4) and MLC-3fast (another splicing product of the
MYL1 gene) are not detectable in the developing muscles
before E15 [16].

Embryonic/neonatal-to-adult myosin switch
Developmental myosins disappear in most skeletal mus-
cles during the early postnatal development concomi-
tantly with the upregulation of adult fast myosins. In the
rat leg skeletal muscles, the transcripts for adult fast
MyHCs (MyHC-2A, MyHC-2X, and MyHC-2B, coded
by MYH2, MYH1, and MYH4, respectively) are first
detected few days after birth by in situ hybridization and
become predominant during the subsequent weeks [27].
This switch occurs earlier in the mouse skeletal muscles,
as small amounts of adult fast myosin transcripts can be
detected even before birth using sensitive RNAase pro-
tection assays and by in situ hybridization [28]. However,
at the protein level, the fast newborn mouse muscles
contain essentially MyHC-neo (about 70 %) and MyHC-
emb (about 30 %) with traces of MyHC-slow, as deter-
mined by high-resolution gel electrophoresis [29]. The
timing of embryonic and neonatal myosin downregu-
lation and adult fast myosin upregulation shows sig-
nificant variation among body muscles, both at the
mRNA [28] and protein level [29]. The elimination of
developmental myosin may also vary within the same
muscle, for example, neonatal myosin was found to
persist longer in type 2A fibers during postnatal
development [30]. Interestingly, the timing of down-
regulation of developmental MyHC isoforms was es-
sentially unchanged in MYH4 (2B) and MYH1 (2X)
null mice [31].
The switch from developmental to adult fast MyHCs

seen in rodent fast muscles takes place also in cultured
muscle cells. It has been reported that C2C12 muscle
cells, when induced to differentiate upon transfer to low
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serum medium, first express MyHC-emb, MyHC-neo,
and MyHC-slow transcripts, starting at day 1 and peak-
ing at day 2–4 then decreasing, whereas MyHC-2A,
MyHC-2X, and MyHC-2B transcripts start to increase at
day 2–4 and peak by day 8 (the last time point exam-
ined) [32]. However, there are controversial results about
the MyHC expression pattern in satellite cell cultures
from different skeletal muscles (see [33, 34]), and
masticatory-specific myosin heavy chain (Myh16) was
detected in cultures of cat jaw muscle but not limb
muscle, suggesting that muscle cells from jaw-closing
muscles are preprogrammed to express these isoforms
during myogenesis in vitro [35].
The developmental switch from developmental to

adult MyHCs can be modulated by extrinsic hormonal
and neural influences. The embryonic/neonatal-to-adult
fast myosin switch is under the control of a thyroid
hormone, hyperthyroidism inducing a precocious ex-
pression of adult fast myosin heavy chain mRNA and
hypothyroidism inducing a delay in this switching
[36–38]. In contrast, nerve activity is apparently not
necessary for the embryonic/neonatal-to-fast myosin
switch [39, 37] but is required to promote the postnatal
accumulation of MyHC-slow and the disappearance of
MyHC-emb in the slow soleus muscle [19].
The molecular mechanisms controlling the myosin

switch during development remain to be established and
probably involve specific regulatory sequences associated
with the MYH gene cluster, where MYH genes are
arranged in the order: MYH3-MYH2-MYH1-MYH4-
MYH8-MYH13. It has been reported that thyroid hor-
mone controls the transition between neonatal and adult
fast 2B MyHC by a long non-coding antisense RNA
which is transcriptionally regulated during postnatal
development and in response to hypothyroidism: this
antisense RNA is transcribed from a site within the
intergenic region between MYH8 (MyHC-neo) and the
closely associated MYH4 (MyHC-2B) gene and appears
to mediate the transcriptional repression of the MYH8
gene [40]. A central enhancer located between the
MYH3 and MYH2 genes has been recently identified
[41]. This enhancer, whose function is controlled by six
homeoproteins, acts in cis by upregulating the expres-
sion of fast MYH genes (MYH2, MYH1, and MYH4), lo-
cated downstream of the enhancer, and in trans via a
long intergenic non-coding RNA (linc-Myh) to suppress
the expression of MYH7 (MyHC-slow) [41]. However, it
is not known whether this enhancer is also involved
in the regulation of developmental myosin genes,
MYH3 and MYH8, thus behaving like a MYH locus
control region (LCR) similar to that present in the β-
globin locus, or whether other LCRs, associated to
the MYH gene cluster, control the developmental
MYH switch.
Myosin changes in the developing human skeletal muscle
The developmental pattern of myosin isoform expres-
sion in the human embryonic and fetal skeletal muscle
has been comparatively less investigated. At week 8 of
gestation, primary generation fibers with central nuclei
are present in the human skeletal muscle, whereas sec-
ondary generation fibers are formed after week 10 and
become the predominant fiber population by week 21
[42]. MyHC-emb, MyHC-slow, and MyHC-neo tran-
scripts are detectable in the developing skeletal muscle
at week 9 (Fig. 1). At the protein level, all primary myofi-
bers express MyHC-emb and MyHC-slow [43, 44], with
MyHC-emb being detectable before MyHC-slow in the
initial myotubes [45]. The proportion of fibers staining
for MyHC-slow decreases from 75 % at week 10 to 3 %
at week 21 of gestation, due to the dramatic increase in
secondary fibers that initially do not contain MyHC-
slow [45]. Secondary generation fibers express only
MyHC-emb at week 12, MyHC-neo protein being de-
tected at later stages [45]. Quantitative RNA analysis
indicates that MYH3 transcripts account for about 81 %
of all MYH transcripts in the human fetal skeletal
muscle at week 15 of gestation [46]. At week 16 to 17, a
tertiary fiber population has been identified, initially
composed of very small myofibers stained by an anti-
myosin antibody reactive with adult fast but not with
neonatal MyHC [44, 47]. In situ hybridization indicates
that MyHC-2A transcripts are weakly expressed at week
19 and more strongly at birth, whereas MyHC-2X tran-
scripts are barely present at birth and are clearly
expressed at 30 days after birth (Fig. 1). After week 27, a
proportion of secondary fibers starts to express MyHC-
slow, and by week 30, about 50 % of all muscle fibers
express MyHC-slow, like in adult muscle [45, 44]. In the
developing human muscles, both developmental MyHC
isoforms are downregulated toward the end of gestation,
the corresponding MyHC transcripts are expressed at
low levels at birth, and in a 1-month-old infant, MyHC-
neo persists only in a few fibers [48] (Fig. 1). In conclu-
sion, most human skeletal muscle fibers, probably more
than 95 %, appear to derive from secondary and tertiary
waves of myogenesis and their diversification into the
fast type 2A or slow type 1 lineage occurs before birth,
during the third trimester of gestation, whereas the dif-
ferentiation of type 2X fibers takes place in the first
week after birth.
In the developing human quadriceps, three MLC pro-

teins can be detected by 2D gel electrophoresis between
week 7 and 12 [49]. MLC-3fast becomes clearly visible
at week 25, when MLC-1emb starts to decrease rapidly.
The major change during the third trimester of gestation
is the progressive accumulation of the slow isoforms of
MLC, so that at birth, the MLC profile is similar to that
of adult muscle [49]. MLC-1sa transcripts are also



Fig. 1 MyHC transcripts in developing human skeletal muscle. The transcripts were revealed by in situ hybridization using probes specific for the
following MYH genes: MYH3 (Emb, a–d), MYH8 (Neo, e–h), MYH7 (Slow, i–l), MYH2 (2A, m–p), and MYH1 (2X, q–t). Muscles examined were quadriceps
femoris from 9 and 19-week-old fetuses and vastus lateralis from 1-day- (P1) and 1-month-old (P30) newborns. Bar = 30 μm (from [48])

Schiaffino et al. Skeletal Muscle  (2015) 5:22 Page 5 of 14
detectable in human skeletal muscles at week 24,
though at significantly lower levels compared to adult
muscle [50].

Developmental myosins in adult skeletal muscle
Developmental MyHCs persist throughout adult stages
in a number of fibers present in specialized muscles,
including the extraocular muscles [51, 52] and muscle
spindles [53, 54, 23], as well as the jaw-closing muscles
[55–57] and laryngeal muscles [58]. MLC-1emb/atrial is
also present in adult human masseter muscle [55] and is
the exclusive or predominant essential MLC associated
with MyHC-M (MYH16) in the jaw-closing muscles
of carnivores and other mammalian species [59, 60].
A recent proteomics study of single fibers from the
adult mouse skeletal muscle revealed that traces of
MyHC-emb are detectable in all adult myofibers,
whereas small amounts of MyHC-neo are present in
fast muscle fibers [61]. MyHC-emb has also been de-
tected in the adult human skeletal muscle [62]. In the
extraocular muscles, the fibers expressing MyHC-emb
are specifically localized in the orbital layer (Fig. 2a)
and show variations in expression along the length of
the fibers, being more abundant in the distal zones
and less abundant in the central zone (see [63]). In these
muscles, embryonic myosin is usually co-expressed with
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Fig. 2 Embryonic MyHC in adult skeletal muscles. a Transverse
sections of rat extraocular muscle (rectus superior) reacted with a
monoclonal antibody specific for MyHC-emb (BF-G6, see [76]). Note
that embryonic myosin is expressed in most fibers of the orbital
layer (O) but only in rare fibers of the global layer (G) of the muscle.
Bar = 100 μm. b Embryonic myosin in intrafusal fibers of muscle
spindles. Serial sections of rat soleus muscle viewed in phase contrast
or stained for MyHC-emb (MYH3), MyHC-slow-tonic (MYH7b), or MYH15
(MYH15). Embryonic myosin is detected in the nuclear chain fibers of a
muscle spindle (3 and 4) but not in the nuclear bag fibers (5 and 6),
nor in the extracapsular region of an adjacent spindle (fibers 1 and 2).
Extrafusal muscle fibers (asterisk) are unstained. Bar = 20 μm (modified
from [22])

a contr 3 days 14 days 

b

Fig. 3 Embryonic MyHC in regenerating muscle fibers. a Expression
of embryonic myosin in regenerating rat skeletal muscle at various
time periods after bupivacaine-induced injury. The progression of
muscle regeneration from day 3 to day 14 after injury can be
followed in serial sections stained with hematoxylin and eosin
(upper panels) or immunostained for embryonic myosin (lower
panels). Note the absence of embryonic myosin in the control
muscle. Bar = 50 μm (modified from [65]). b Regenerating muscle
fibers staining for embryonic myosin in human myopathies. Section
of human muscle biopsy from a patient with polymyositis stained
for MyHC-emb (red) and laminin (green). Note the large number of
regenerating muscle fibers reactive for embryonic myosin. Bar = 50 μm
(courtesy of Elena Pegoraro)

Schiaffino et al. Skeletal Muscle  (2015) 5:22 Page 6 of 14
other myosin types [63], including the newly discov-
ered MYH15 [22]. In the two fiber types present in
muscle spindles, the nuclear chain and nuclear bag fi-
bers, MyHC-emb and MyHC-neo are mostly localized
in nuclear chain fibers (Fig. 2b). The embryonic and
neonatal MYH genes can be induced by hypothyroidism
in specific adult muscles [64]. Muscle paralysis induced by
resection of the nerve or by tetrodotoxin-induced
block of nerve conduction also leads to re-expression
of developmental myosins, which occurs specifically
in type 2A fibers but is generally restricted to short
fiber segments [30].
Re-expression of developmental myosins in regenerating
muscle
Skeletal muscles can efficiently regenerate after different
types of injury (see [65] for a review). Muscle regener-
ation is mediated by the satellite cells present under the
basal lamina of the muscle fibers, which are activated
after injury and undergo proliferation and fusion, thus
forming new muscle fibers. Regenerating muscle fibers
re-express developmental isoforms of myosin, troponin,
and other muscle proteins [66, 67, 3]. Embryonic and
neonatal MyHCs are detected in newly formed regener-
ating myofibers at 2–3 days after injury and persist for
2–3 weeks (Fig. 3a). MLC-1emb is also transiently
expressed in regenerating skeletal muscles [68]. Re-
expression of developmental myosins can be revealed in
a variety of conditions that involve muscle degeneration/
regeneration events, including injection of the snake
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venoms notexin and cardiotoxin [69, 70], chronic de-
nervation [71], or muscle damage induced by chronic
electrical stimulation [72]. The presence of developmen-
tal myosins thus represents a useful marker of muscle
regeneration in animal models of muscle disease, such
as the dystrophin-deficient mdx mouse model of muscu-
lar dystrophy [73] and in human myopathies, such as
Duchenne muscular dystrophy [74] or polymyositis
(Fig. 3b). The presence of embryonic myosin can also
be a useful marker in the diagnosis of rhabdomyosar-
coma [75, 76].
The switch from embryonic/neonatal-to-adult fast my-

osins in regenerating muscle is independent of innerv-
ation, whereas the switch to slow myosin is controlled
by slow nerve activity [69, 66, 70]. In an extensively used
model, with muscle injury induced by bupivacaine injec-
tion in the rat slow soleus muscle, regenerating myofi-
bers express only embryonic and neonatal myosin
transcripts at day 2–3 after injury but, at day 4, start to
express adult fast myosin mRNAs. However, in the pres-
ence of the nerve, the slow myosin is rapidly upregulated
and fast myosin transcripts are downregulated, whereas
in the absence of the nerve, adult fast myosins continue
to accumulate and slow myosin transcripts remain un-
detectable [77]. This process is mediated by the pattern
of nerve activity, as it can be reproduced by electrical
stimulation of regenerating muscle using a stimulation
pattern that mimics the endogenous slow motor neuron
activity [78]. However, regenerating fast and slow mus-
cles respond differently to the same stimulation pattern,
supporting the possibility that the embryonic/neonatal-
to-adult fast or slow myosin switch reflects the existence
of intrinsic differences between satellite cell populations
in the various fiber types. This interpretation is consist-
ent with a number of studies on cultured muscle cells;
however, this issue is outside the scope of this review.

Human congenital disorders due to mutations of
embryonic and neonatal myosins
The crucial role of embryonic and neonatal myosin dur-
ing human development has more recently been demon-
strated by the pathological consequences of MYH3 and
MYH8 mutations (see [79]). Mutations in the MYH3
(MyHC-emb) gene are responsible for some types of dis-
tal arthrogryposis (DA) syndromes, congenital disorders
characterized by multiple limb contractures [80]. MYH3
gene mutations have been associated with two major DA
syndromes, DA2A and DA2B/DA1. Freeman-Sheldon
syndrome (FSS, DA2A) is characterized by facial con-
tractures and congenital scoliosis, in addition to contrac-
tures of the limbs. This is the most severe of the DA
syndromes and patients require nutritional, surgical, and
rehabilitative intervention [81]. FSS was also known as
the “whistling-face syndrome”, because the lips appear
pursed or pinched leaving only a small oral opening. In
fact, to date, the only identified cause of FSS is mutation
in the MYH3 gene. DA2B (Sheldon-Hall syndrome,
SHS) and DA1, which appear to represent the extremes
of the same phenotypically variable and genetically het-
erogeneous condition, can also be due to MYH3 muta-
tions [82]. However, DA2B and DA1 can also be caused
by mutations in TNNI2, coding for fast troponin I,
TNNT3, coding for fast troponin T, and TPM2, coding
for β-tropomyosin.
Most MYH3 mutations in DA2A and DA2B do not

overlap, suggesting that there is a relationship between
MYH3 genotype and phenotype (Fig. 4), and also within
DA2A several aspects of the phenotype are associated
with specific mutations [80]. Three MYH3 mutations in-
volving conserved residues, T178I, R672H, and R672C,
account for more than 90 % of the MYH3 mutations that
cause FSS, with T178I being the most severe and R672C
the least [81]. However, T178I has also been associated
with SHS. Both R672 and T178 residues map to a groove
adjacent to the nucleotide binding site, suggesting that
mutation of these residues may alter the active site sur-
rounding the nucleotide binding site. In contrast, resi-
dues mutated in SHS generally localize to surfaces that
may interact with other proteins of the contractile ap-
paratus such as actin and troponin: this could explain
why a similar SHS phenotype can be caused by TNNI2
and TNNT3 mutations (Fig. 4).
MYH8 (MyHC-neo) mutations are responsible for an-

other form of distal arthrogryposis (DA7), referred to as
the trismus-pseudocamptodactyly syndrome (TPS) be-
cause the patients cannot open the mouth fully (trismus)
and show an unusual camptodactyly (flexion of the fin-
gers) that is evident only on dorsiflexion of the wrist
(i.e., pseudocamptodactyly). In contrast to the large
number of MYH3 mutations causing FSS and SHS, only
a single MYH8 mutation (R674Q) has been identified in
different families with trismus-pseudocamptodactyly
syndrome [83, 84]. The affected residue R674, which be-
cause of different numbering corresponds to R672 in the
MYH3 gene described above, is conserved in different
vertebrate species and in different MYH gene coding for
sarcomeric myosins. This residue is localized near the
ATP binding site and may thus interfere with myosin
catalytic activity. In the family described by Veugelers
et al. [84], TPS was found to be associated with manifes-
tations typical of the Carney complex, including the
presence of cardiac myxomas, suggesting a possible role
of the MYH8 gene in cardiac development. However,
this association was not found in the families reported
by Toydemir et al. [83], and TPS was never observed in
large collections of Carney complex cases [85].
How can one explain the congenital contractures

induced by mutations in developmental myosins? A



b

a

Fig. 4 MYH3 mutations causing distal arthrogryposis. a Scheme of the embryonic myosin molecule showing the sites of different mutations
causing Freeman-Sheldon syndrome (FSS, above) and Sheldon-Hall syndrome (SHS, below). Note that most mutations localize to the head domain
of the myosin molecule, and that mutations causing FSS differ from those causing SHS. b A model of the actin-myosin complex. A portion of the
actin filament comprising five actin monomers is shown as a dark gray ribbon. Myosin heavy chain (Heavy chain), essential light chain (ELC), and
regulatory light chain (RLC) are shown as blue, orange, and green ribbons, respectively. MYH3 mutations causing distal arthrogryposis are shown
with oversized space-filling atoms, with FSS mutations colored red and SHS mutations yellow (modified from [80])
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plausible interpretation is that MYH3 or MYH8 gene
mutations interfere with myosin’s catalytic activity due
to the dominant negative effect of the mutated allele,
thus causing defects in myofiber force production in
utero. Active movements of the embryo are required
for the normal development of the joints, as shown
by classic studies in the chick embryo [86, 87]. These
studies showed that muscle paralysis induced in ovo
by neuromuscular blocking agents, such as curare or
botulinum toxin, causes arthrogryposis. The orofacial
dysmorphisms induced by MYH3 or MYH8 gene mu-
tations might reflect a similar role of the contraction
of facial expression muscles in shaping the form of
the face during fetal development.
The view that mutations of MYH3 and MYH8 lead to

hypocontractility of fetal muscles has received support
by two recent findings. First, the alteration of the cross-
bridge turnover in patients carrying R672C mutation has
been confirmed by a detailed analysis of myofibril and
single-fiber mechanics [62]. Second, preliminary results
with isolated myosin S1 (subfragment 1), the portion of
the myosin molecule comprising the myosin head and
lever arm, which is sufficient to drive actin sliding move-
ment in in vitro motility assays, have shown that several
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kinetic parameters of the cross-bridge cycle are altered in
the presence of R672C, R672H, and T178I FSS-causing
mutations [88].

Contractile properties of embryonic and neonatal myosins
Pioneering studies in the 1960s showed that a transition
in contractile properties occurs around or just after birth
in cat [89, 90] and rat muscles ([91, 92], see [93] for a
review), as depicted in Fig. 5a, b. During the first week
of postnatal development, isometric force increases in
both slow and fast muscles, while maximum shortening
velocity increases in fast but not in slow muscles. The
increase in strength could be explained by addition of
myofibrils in parallel (but see below); however, the
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between myosin isoform replacement and changes in
contractile properties, maximum shortening velocity,
and ATPase activity has been analyzed in single muscle
fibers where MyHC expression was determined by gel
electrophoresis. In rabbit psoas, replacement of neonatal
MyHC with adult fast, mainly 2X, isoforms is associated
with a threefold increase in maximum shortening vel-
ocity [96] (see Fig. 5c). In the rat diaphragm, neonatal
myosin is the predominant isoform in the first two
weeks after birth, although rarely expressed alone in in-
dividual fibers, but more often associated with fast 2A
myosin [97–99]. Fibers expressing predominantly neo-
natal myosin show values of shortening velocity and
ATPase activity comparable to slow fibers and much
lower than fast 2X and 2B fibers (Fig. 5d). The dis-
appearance of neonatal myosin is associated with an
increase in ATP consumption rate [98] and increase in
power output [99].
The view that, in mammals, neonatal myosin has kin-

etics similar to 2A myosin but slower than 2X and 2B
myosins has received support from the experiments on
recombinant human myosin S1 motor domain expressed
in C2C12 myotubes [100]. An additional interesting fea-
ture emerging from Resnicow et al. [100] data is that Km

values for actin are much greater for developmental than
for adult myosins. This suggests even lower values of
ATP hydrolysis rate for immature myofibrils in condi-
tions other than maximal actin activation.
The functional features of embryonic myosin are still

little known. The study by Resnicow et al., however,
shows that the kinetics of embryonic myosin are slower
than those of neonatal myosin, both for ATPase rate and
for actin filament sliding velocity [100]. Although the in-
terpretation of this result is complicated by the finding
that embryonic myosin motor domain did not bind any
light chain when expressed in C2C12 myogenic cells, an
independent study points to the same conclusion [46].
Purified myosin and intact myofibrils were prepared
from human muscle samples obtained from four fetuses
of the age of 12–15 weeks post conception. Quantitative
PCR and protein analysis showed that MyHC-emb was
largely predominant, above 80 % of the total myosin
present. Compared to psoas rabbit myosin (likely a mix-
ture of 2X and 2B myosins), the actin filament velocity
of the human embryonic myosin was more than three
times lower. Taking into account that rabbit myosins are
approximately two times as fast as human embryonic
muscle myosin(s) [101], one can assume that gliding
speed of actin filaments on human embryonic myosin is
at least 1.5 times lower than on fast human myosin.
Intact myofibrils also allowed determination of force

and rate of force development and decline. Force devel-
oped by myofibrils containing embryonic myosin was
found to be more than ten times lower than that
developed by adult human myofibrils [46]. No data are
available for the ability to develop force of myofibril con-
taining neonatal myosin, but the results obtained on em-
bryonic myosin suggest that the increase of active force
during development may be due not only to accumula-
tion of myofibrils in parallel but also to the transition of
myosin isoforms.
While the kinetic properties of the contractile re-

sponse are almost exclusively linked to the MyHC iso-
forms, the force development might also be significantly
affected by other proteins present in the myofibrillar
apparatus. Developmental changes in MLC gene expres-
sion (see above) may be relevant. In the thin filament,
embryonic and neonatal skeletal muscle may also ex-
press unique isoforms: for example, cardiac troponin T
(TnT) is expressed in embryonic skeletal muscle and
unique TnT isoforms, presumably derived by alternative
splicing of the fast skeletal muscle TnT gene, are de-
tected in fetal and neonatal muscle [67].

Functional significance of developmental myosins
One relevant question remains unanswered: what is the
advantage (or necessity), if any, of having specific myosin
isoforms during muscle development. Two distinct inter-
pretations can be considered. One possibility is that
developmental myosins have structural characteristics
appropriate for myofibril formation during myogenesis,
both in the embryo and during muscle regeneration in
the adult. According to the premyofibril model of myofi-
brillogenesis developed by Sanger from studies in avian
cardiac and skeletal muscle cells and recently confirmed
in mouse skeletal muscle cells [102], myofibril assembly
in premyofibrils is characterized by bands of class II
non-muscle myosin alternating along actin fibers with
bands of muscle-specific α-actinin. The transition from
the premyofibril to the nascent myofibril is marked by
the addition of class II muscle (sarcomeric) myosin, but
it is not known whether the presence at this stage of
MyHC-emb is an obligatory step for myofibrillogenesis
to occur in skeletal muscle cells. Knockout experiments
in vivo or knockdown experiments in cultured muscle
cells would be required to address this question. It
should be stressed that myofibrils essentially identical to
those present in skeletal muscle are formed in the ab-
sence of MyHC-emb in developing cardiac muscle cells,
which contain only MyHC-β/slow and MyHC-α [103].
Knockout or knockdown experiments could also be used
to determine whether embryonic and neonatal isoforms
have redundant functions, so that one of them is able to
fully compensate for the lack of the other.
Another possibility is that embryonic and neonatal

myosins have unique properties adapted to the prenatal
developmental environment. For example, it is well
known that fetal hemoglobin has a greater oxygen
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affinity than adult hemoglobin due to specific embryonic
and fetal globins, whose presence contributes to trans-
placental oxygen flux in the context of a relative hypoxic
intrauterine environment [104]. Developmental switch-
ing of contractile proteins might also be affected by oxy-
gen tension. In cardiac muscle, hypoxia was shown to
reactivate gene expression programs of early cardiac
development, with upregulation of MyHC-slow (MYH7)
and downregulation of MyHC-α cardiac (MYH6), both
in ventricles from rats exposed to hypobaric hypoxia and
in neonatal rat cardiomyocytes incubated in a hypoxic
chamber [105]. In cultured skeletal muscle cells, hypoxia
was found to stimulate the expression of MyHC-slow via
HIF-1α [106]. The developmental switching of troponin
I from the slow skeletal to the cardiac isoform, that is
known to modulate the calcium sensitivity of the con-
tractile apparatus, has been associated with the greater
resistance to hypoxia and acidosis of the fetal and neo-
natal heart (see [107]). However, to our knowledge, there
is no comparative study on the effect of hypoxia and
acidosis on the function of developmental and adult my-
osins in skeletal muscle. The low ATPase rate typical of
neonatal, and even more, embryonic myosin might sug-
gest that these myosin isoforms allow a contractile activ-
ity at a very low energetic cost.
An alternative possibility is that load-bearing proper-

ties of developmental myosins play an important role in
the transitions of myosin during development, as fetal
muscles contract against a very low load compared to
postnatal muscles [108]. It is tempting to speculate that
fetal tendons, joints, and bones require the mechanical
stimuli produced by muscle contraction for their correct
growth but, at the same time, cannot bear excessive
strains, and embryonic myosin might have appropriate
properties in this respect. Accordingly, it has been spec-
ulated that the persistence of developmental myosins in
the extraocular muscles may be related to the fact that
oculorotatory muscles contract against a much lower
load compared to other skeletal muscles [51]. This inter-
pretation could be tested by specific experimental ap-
proaches. In particular, it will be crucial to determine
the contractility of embryonic and neonatal myosin by
loaded in vitro motility assays and single-molecule ana-
lyses with a dual-beam laser trap (see [109]).

Conclusions
The presence of unique MyHCs and MLCs in develop-
ing skeletal muscle and their re-expression in regenerat-
ing muscle was first reported in the late 1970s to early
1980s. During the subsequent years, the gene coding for
embryonic and neonatal myosins were characterized,
their expression patterns were defined, and the factors
involved in the developmental-to-adult myosin switch
were identified. However, the physiological significance
of developmental myosins remained completely unclear
until 2006, when embryonic (MYH3) mutations were
first reported to cause specific syndromes characterized
by congenital joint contractures. This finding has opened
up a new phase of research aimed at dissecting the func-
tional properties of embryonic and neonatal myosins
and the consequences of their mutations. Analyses on
myofibrils and single fibers, and especially on isolated
myosin S1, are expected to define the kinetic parameters
of the cross-bridge cycle of developmental myosins and
their response to loading conditions, thus addressing the
unsettled question of why specific myosin isoforms are
needed during muscle development.
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