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Background: Via the hepatocyte growth factor receptor (Met), hepatocyte growth factor (HGF) exerts key roles
involving skeletal muscle development and regeneration. Heparan sulfate proteoglycans (HSPGs) are critical modulators
of HGF activity, but the role of specific HSPGs in HGF regulation is poorly understood. Glypican-1 is the only HSPG
expressed in myoblasts that localize in lipid raft membrane domains, controlling cell responses to extracellular stimuli.
We determined if glypican-1 in these domains is necessary to stabilize the HGF-Met signaling complex and myoblast

Methods: C2C12 myoblasts and a derived clone (C6) with low glypican-1 expression were used as an experimental
model. The activation of Met, ERK1/2 and AKT in response to HGF was evaluated. The distribution of Met and its
activated form in lipid raft domains, as well as its dependence on glypican-1, were characterized by sucrose density
gradient fractionation in both cell types. Rescue experiments reexpressing glypican-1 or a chimeric glypican-1 fused to
the transmembrane and cytoplasmic domains of mouse syndecan-1 or myoblast pretreatment with MBCD were
conducted. In vitro and in vivo myoblast migration assays in response to HGF were also performed.

Results: Glypican-1 localization in membrane raft domains was required for a maximum cell response to HGF. It
stabilized Met and HGF in lipid raft domains, forming a signaling complex where the active phospho-Met receptor was
concentrated. Glypican-1 also stabilized CD44 in a HGF-dependent manner. In addition, glypican-1 was required for

Conclusions: Glypican-1 is a regulator of HGF-dependent signaling via Met in lipid raft domains.

Keywords: Glypican-1, Heparan sulfate proteoglycans, Hepatocyte growth factor, HGF-mediated signaling, Raft

Background

The process of skeletal muscle regeneration is initiated
immediately after injury by the release of growth factors
and cytokines from injured muscles, blood vessels, infil-
trating inflammatory cells and extracellular matrix (ECM)
reservoirs. These factors include basic fibroblast growth
factor 2 (FGF-2) and hepatocyte growth factor (HGF)
[1-3]. The factors promote the activation, proliferation, mi-
gration and survival of satellite cells (SCs), which are the
muscle stem cells responsible for the formation of new
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muscle fibers [2]. HGF was originally identified as a scatter
factor because of its ability to increase the motility of sev-
eral normal and neoplastic cells [4,5]. The requirement of
HGF for migration of muscle precursor cells during mouse
muscle development has been established by the genetic
ablation of HGF or the HGF receptor (Met). In both cases,
the result was the absence of hindlimb muscles, which are
formed by muscle precursor cells that migrate from the
dermomyotome [6-8]. In vitro studies have shown that
HGF not only induces the proliferation and migration of
myogenic cells but that it also delays muscle differentiation
by inhibiting the expression of MyoD and myogenin, two
master myogenic regulatory transcription factors [3,9,10].
The expression of HGF and Met are downregulated during
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myogenesis, which is consistent with attenuation of myo-
genic inhibitory signaling of HGF [11-13]. Therefore, HGF
plays key role during myogenesis, regulating the prolifera-
tion, migration and subsequent differentiation of muscle
precursor cells.

Upon HGF binding, Met is activated by dimerization
with subsequent trans-phosphorylation of four tyrosine
residues which act as docking motifs for signaling media-
tors, including mitogen-activated protein kinase (MAPK),
extracellular signal-regulated kinases 1 and 2 (ERK1/2)
and phosphoinositide 3-kinase protein kinase B (AKT),
among others [14-16].

It has been proposed that HGF and Met form a complex
in lipid rafts, which are sphingolipid- and cholesterol-rich
domains that form phase-separated lipid rafts in the mem-
brane. In these domains, Met is stabilized by HGF to in-
duce its activation [17-20].

Another important component of the HFG-Met sig-
naling is the ubiquitous transmembrane glycoprotein
CD44, the major receptor for hyaluronic acid [21,22]. In
different cell types, the activation of the MET receptor
by HGF depends on the presence of some isoforms of
CD44 [21]. As proposed, HGE, Met and CD44 would form
a complex in lipid raft membrane domains, which cor-
responds to sphingolipid- and cholesterol-rich domains
forming phase-separated lipid rafts in the membrane,
where Met would be stabilized by HGF inducing its acti-
vation [17,18].

HGF also binds to heparin, heparan sulfate (HS) and
dermatan sulfate [23-27]. Heparan sulfate proteoglycans
(HSPGs), key components of the cell surface and the
ECM, regulate many processes related to cell growth
and differentiation. Cell-surface HSPGs bind soluble li-
gands, increasing their local concentration and modulating
ligand—receptor interactions [28]. For example, HSPG is
required for FGF-2-dependent signaling through its recep-
tors (FGFRs) [29-32], forming the ternary complex HSPG-
FGF-2-FGFR [33]. However, the exact role of HSPG in
HGF signaling is poorly understood. In vitro assays have
shown that heparin increases the mitogenic effect of HGF
and facilitates its oligomerization, inducing Met dimeri-
zation and activation [34]. Previously, we showed that
myoblast migration induced by HGF was strongly inhib-
ited if the cells were depleted of HS chains, indicating that
at least the myoblast cell response to HGF depended on
HS [23].

We have also previously shown that myoblasts express
different membrane-bound HSPGs, the four transmem-
brane syndecans and glypican-1, which corresponds to a
glycosylphosphatidylinositol-anchored HSPG [31,32,35-39].
Glypican-1 is the only HSPG located in lipid raft microdo-
mains, which sequester FGF-2 to avoid its interaction with
FGERs. Thus, glypican-1-deficient cells exhibit enhanced
sensitivity to FGF-2. In contrast, HGF-dependent signaling
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was clearly decreased in the absence of glypican-1, suggest-
ing that glypican-1 was a positive regulator of HGF signal-
ing [38].

Because HGF and Met are found in lipid raft domains
[17-20], we hypothesize that glypican-1 in these domains
is necessary to stabilize the HGF-Met signaling complex.
In the present study, we report that the presence of
glypican-1 in lipid rafts was required for maximum HGEF-
dependent signaling, localizing and stabilizing HGF and
Met in its phosphorylated or activated state (phospho-
Met). We also show that glypican-1, phospho-Met and
HGF interact, indicating that they form part of a signaling
complex in lipid rafts. Finally, we show that glypican-1 is
required for myoblast migration induced by HGF in vitro
and in vivo, demonstrating the requirement of glypican-1
expression and HGF for processes such as muscle stem
cell therapy, where the migration of myoblasts must be
enhanced.

Methods

Cell culture

The mouse skeletal muscle cell line C2C12 (American
Type Culture Collection, Manassas, VA, USA) [40] and its
derived clone deficient in glypican-1 expression [38] were
grown as previously described [31,38]. Myoblasts were
treated with HGF (R&D Systems, Minneapolis, MN, USA)
as indicated in each experiment. Methyl-p-cyclodextrin
(MBCD) (Sigma-Aldrich, St Louis, MO, USA) treatment
at 1 or 10 mM concentrations were performed as previ-
ously described [38]. For the phosphorylation experiments
of Met, ERK1/2 and AKT, the cells were serum-starved
for 6 hours and then treated for the indicated times.

Transient transfection and generation of stable clones
The pcDNA3.0 empty vector (Invitrogen, Carlsbad, CA,
USA) and pcDNA3.0 vectors containing rat glypican-1
and chimeric HSPG comprising the extracellular domain
of rat glypican-1 were fused to the transmembrane and
cytoplasmic domains of mouse syndecan-1 containing a
FLAG epitope in their amino-terminal F-Gly and F-
GlySyn, respectively [38]. Transfection were carried out
using Lipofectamine and PLUS reagents (Invitrogen) ac-
cording to the supplier’s protocol.

Isolation of lipid rafts

Lipid rafts were prepared as described previously, with
some modifications [38]. All of the buffers and instru-
ments used in the procedure described below were used
at 4°C. Briefly, C2C12 myoblasts from a 150-mm dish were
lysed in 400 pl of lysis buffer (25 mM 2-(N-morpholino)
ethanesulfonic acid, pH 6.5, 150 mM NaCl, with a mixture
of protease inhibitors and 1 mM phenylmethanesulfonyl
fluoride supplemented with 1% Triton X-100). Cells were
incubated for 20 minutes on ice, then homogenized with
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ten strokes of a loose-fitting Dounce homogenizer. Ho-
mogenates were mixed with 400 pl of 90% sucrose (45%
final concentration), loaded at the bottom of a Sorvall 4-ml
centrifuge tube (Thermo Scientific, Asheville, NC, USA)
and overlaid with 1.6 ml of 35% sucrose and 1.6 ml of 5%
sucrose, both in the lysis buffer without Triton X-100. The
samples were centrifuged at 45,000 rpm for 18 hours at
4°C in an AH-650 rotor. Twelve fractions (330 pl each)
were collected from top to bottom and designated as
fractions 1 to 12. Only the last ten fraction were ana-
lyzed, because the low-density lipid raft—enriched frac-
tions started at fraction 5 in several previous assays that
we performed.

SDS-PAGE, Western blot and coimmunoprecipitation assays
Aliquots from the last ten fractions of the different sucrose
density fractionations were separated on 8% SDS-PAGE
gels (Mini-PROTEAN II; Bio-Rad Laboratories, Hercules,
CA, USA) and electrophoretically transferred to Immobilon
membranes (EMD Millipore, Bedford, MA, USA). Western
blots were probed using the following primary antibodies:
rabbit anti-mouse Met (1:200) (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), rabbit anti-phospho-Met at Tyr
1234 and Tyr 1235 (1:1,000) (Cell Signaling Technology,
Danvers, MA, USA), rabbit anti-caveolin-1 (1:500) (Santa
Cruz Biotechnology), rabbit anti-glypican-1 M-95 (1:500)
(Santa Cruz Biotechnology), mouse anti-Na'/K"-ATPase
(1:1,000) (Upstate Biotechnology, Lake Placid, NY, USA)
and rat anti-CD44 (1:500) (BD Pharmingen, San Jose, CA,
USA).

To identify glypican-1, samples containing equivalent
amounts of protein were treated with heparitinase and
chondroitinase ABC (United States Biological, Swampscott,
MA, USA) as previously described [39,41] prior to SDS-
PAGE and Western blot analysis using anti-glypican-1 M-
95 antibody.

For analysis of phosphorylated proteins, cell extracts
were prepared in radioimmunoprecipitation assay (RIPA)
buffer in the presence of phosphatase inhibitors as previ-
ously described [38,42]. Aliquots with equivalent amounts
of protein were subjected to SDS-PAGE in 8% polyacryl-
amide gels, electrophoretically transferred to Immobilon
membranes (EMD Millipore) and probed with the fol-
lowing antibodies: rabbit anti-phospho-ERK1/2 (1:1,000),
mouse anti-FLAG (1:5,000) (Stratagene, La Jolla, CA, USA),
rabbit anti-ERK1/2 (1:1,000), rabbit anti-phospho-AKT
(1:1,000) (Calbiochem, San Diego, CA, USA), mouse anti-
a-tubulin (1:5,000) (Sigma-Aldrich), mouse anti-myosin
(1:5,000) (Sigma-Aldrich) and mouse anti-glyceraldehyde
3-phosphate dehydrogenase (1:2,000) (Chemicon Inter-
national, Temecula, CA, USA). All immunoreactions were
visualized by enhanced chemiluminescence (Pierce Bio-
technology, Rockford, IL, USA) using a ChemiDoc-It 410
high-resolution imaging system (UVP, Upland, CA, USA).

Page 3 of 16

For coimmunoprecipitation experiments, wild-type and
glypican-1-deficient myoblasts (C6) were transiently trans-
fected as indicated in the figure legends. At 48 hours after
transfection, cells were serum-starved for 4 hours, then ei-
ther treated or not treated with 20 ng/ml ['***IJHGF in
Dulbecco’s modified Eagle’s medium (DMEM) 0.1% bo-
vine serum albumin (BSA) for 5 minutes. The cell extracts
in RIPA buffer plus phosphatase inhibitors were incu-
bated with anti-FLAG M2 Affinity Gel (Sigma-Aldrich)
for 3 hours at 4°C. The beads were sequentially washed
in RIPA buffer, then in heparitinase reaction buffer
(20 mM Tris, 150 mM NaCl, 1 mM MgCl,, 1 mM Ca
Cl,, pH 7.4). The beads were then treated with hepariti-
nase and chondroitinase ABC for 3 hours at 37°C. The
bound material was eluted with protein loading buffer
and assessed by Western blot analysis for total Met,
phospho-Met and glypican-1 or exposed to a phosphori-
mager to detect ['**IJHGF.

Biotin labeling and precipitation of biotin-labeled proteins
Biotin labeling was conducted as previously described
[43]. Equal amounts of protein (100 pg) obtained from
previously biotinylated cell extracts were precipitated for
2 hours at 4°C using streptavidin agarose resin (Thermo
Fisher Scientific, Rockford, IL, USA). The bound material
was eluted with protein loading buffer and assessed by
Western blot analysis for total Met as described above.

Transwell migration assays

Migration assays were conducted using 24-well, 8-pm-pore
transwell systems (EMD Millipore). C2C12 and C6 myo-
blasts were seeded onto the upper part of the chamber at a
density of 100,000 cells per well in 300 pl of serum-free
media. The lower chamber was loaded with 500 ul of
serum-free media with or without 20 ng/ml HGF or 10%
fetal bovine serum (FBS) (data not shown). The cells were
allowed to migrate for 8 hours. Migration was assessed by
removing the cells on the upper side of the transwell with
a cotton swab, then staining the remaining cells with crys-
tal violet, and solubilizing the cells in 1% Triton X-100 to
measure the absorbance of the Triton X-100 solution at
595 nm [44].

In vivo myoblast migration assay

Myoblasts were labeled with the vital dialkylcarbocyanine
dye Dil (red fluorescence) according to the supplier’s
protocol (Sigma-Aldrich). Aliquots containing 500 x 10
myoblasts were resuspended in 30 ul of physiological
serum and kept on ice. Immediately before grafting, 1 pl
of physiological serum containing or not containing 10 ng
of carrier-free HGF was added to myoblast. Three-month-
old C57BL/10 mice were used as hosts, and cells were
slowly injected longitudinally in both tibialis anterior (TA)
muscles of mice under isoflurane gas anesthesia. Cells



Gutiérrez et al. Skeletal Muscle 2014, 4:5
http://www.skeletalmusclejournal.com/content/4/1/5

treated or not treated with HGF were injected into the
contralateral TA muscles. After 7 days, the TA muscles
were snap-frozen in isopentane before being entirely cut
in transversal 7-pum cross-sections. Muscle cross-sections
were visualized under a Nikon Diaphot inverted micro-
scope (Nikon Instruments, Melville, NY, USA) equipped
for epifluorescence. Concentric rings disposed 200 pm from
each other were superimposed on the selected muscle
cross-section photographs. The total number of migrating
myoblasts was determined by counting the labeled cells
that had migrated more than 200 pum from the injection site
(which was determined by the border of the more intense
fluorescence) [45]. The percentage of cells that reached
more than 600 um over the total migrating myoblast was
quantified. These percentages were used to compare the
migration of myoblasts between the different conditions.
All mice had free access to water and a chow diet until they
were studied. All protocols were conducted in strict accord-
ance with the formal approval of the Animal Ethics Com-
mittee of the Pontificia Universidad Catoélica de Chile.

Hepatocyte growth factor affinity labeling and binding assay
Carrier-free HFG was radiolabeled with Na'*’I using the
chloramine T method as previously described for FGF-2
[38]. The biological activity of the radiolabeled HGF was
determined by its ability to induce phosphorylation of
ERK1/2 compared to unlabeled HGF as described above.
The binding of ['**IJHGF to cell surfaces was performed
as described previously with some modifications [46].
Briefly, subconfluent myoblasts were incubated for 2 hours
at 4°C in DMEM containing 0.2% BSA, 25 mM 2-[4-(2-
hydroxyethyl) piperazin-1-yl]ethanesulfonic acid (HEPES),
pH 7.4, and 10 ng/ml [***IJHGEF. To determine nonspecific
binding, parallel cultures were incubated under the same
conditions with the addition of a 200-fold excess of un-
labeled HGEF. After several washes in binding buffer and
once with phosphate-buffered saline to remove unbound
ligand, the cells were sequentially washed twice with 2 M
NaCl in 20 mM HEPES, pH 7.4, for 5 minutes (low affinity
binding) and twice with 2 M NaCl in 20 mM NaAc,
pH 4.0, for 5 minutes (high-affinity binding) [47-49]. The
cells were extracted, and the protein content was deter-
mined as indicated below. The amount of radioactivity
present in the low- and high-affinity washes and cell ex-
tracts was determined using a y scintillation counter. The
counts per minute (cpm) values were corrected for the
protein content in the cell extracts.

Protein determination

Protein content in cell extracts was determined with a
bicinchoninic acid protein assay kit (Pierce Biotechnology)
with BSA used as the standard according to the supplier’s
protocol.
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Statistical analyses

The number of replicates is indicated in the figure leg-
ends for each experiment. Data are presented as the
mean + standard deviation. Statistical significance was as-
sessed using two-way analysis of variance and a Bonferroni
multiple-comparisons posttest. Differences were consid-
ered statistically significant at P < 0.05.

Results

Myoblasts require glypican-1 expression for proper
hepatocyte growth factor signaling

To evaluate the role of glypican-1 in the myoblast response
to HGEF, C2C12 myoblasts and the derived clone C6, which
expresses low levels of HSPG [38], were treated with in-
creasing concentrations of HGF. Phosphorylation of the
Met receptor (phospho-Met) and the second messengers
AKT (phospho-AKT) and ERK1/2 (phospho-ERK1/2) in
response to HGF were analyzed by Western immunoblot-
ting. Figure 1A shows that the phosphorylation levels of
Met, AKT and ERK1/2 increased in a HGF concentration—
dependent manner. However, glypican-1-deficient myo-
blasts required higher concentrations of HGF to induce
phosphorylation of the same proteins. The diminished re-
sponse to HGF in the absence of glypican-1 was specific,
because glypican-1 reexpression resulted in the rescue of
HGF sensitivity. The same figure comparing wild-type
(WT), glypican-1-deficient and glypican-1-overexpressing
myoblasts also shows that the total levels of Met, AKT and
ERK1/2 were not affected by the different conditions of
glypican-1 expression. Quantification values from three in-
dependent experiments are shown in Figure 1B. Figure 1C
shows that expression levels of Met present at the cell
surface were unaltered by the presence or absence of
glypican-1, as determined by labeling of the extracellu-
lar proteins with biotin followed by precipitation with
streptavidin-agarose and detection with a specific anti-
Met receptor antibody using Western blots.

Because muscle precursor cells migrate in response to
HGF during skeletal muscle development and regeneration,
we decided to evaluate the role of glypican-1 in HGEF-
dependent migration. Figures 2A and 2B show that HGF
induces the migration of WT myoblasts tenfold. In con-
trast, less than twofold induction was found in glypican-1-
deficient myoblasts. In the absence of HGEF, WT and
glypican-1-deficient myoblast migration was essentially the
same. Together, these results suggest that glypican-1 is re-
quired for a proper myoblast response to HGEF, as deter-
mined by activation of HGF-dependent signaling and
myoblast migration.

Met is localized and activated in lipid rafts by a HGF- and
glypican-1-dependent mechanism

We have shown that glypican-1 was the only HSPG as-
sociated with lipid raft microdomains in myoblasts [38].
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Figure 1 Myoblasts require glypican-1 expression for proper hepatocyte growth factor signaling. (A) Wild-type (WT) C2C12 myoblasts
and C6 myoblasts (glypican-1-deficient clone) transiently transfected with rat glypican-1 (C6-Gly), were serum-starved for 6 hours and then treated
with the indicated concentrations of hepatocyte growth factor (HGF) for 5 minutes. The cell extracts were analyzed by immunoblotting for total
HGF receptor (Met) levels, phospho-Met (Tyr 1235/1349), phospho- and total AKT levels, phospho- and total levels of extracellular signal-regulated
kinases 1 and 2 (ERK1/2), glypican-1 core protein (after heparitinase treatment), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and tubulin.
Total Met, AKT and ERK1/2 were used as loading control of its respective phosphorylated forms. GADPH and tubulin were used as loading control
of glypican-1 expression levels. The Western blot images are representative of three independent experiments. (B) Quantitation of phospho-Met,
phospho-AKT and phospho-ERK1/2 from three independent experiments is shown. Values are expressed as mean + standard deviation. Statistical
significance was assessed using two-way analysis of variance and a Bonferroni multiple-comparisons posttest. *P < 0.05, **P < 0.01. (C) Cell surface
proteins of WT and C6 myoblasts labeled with EZ-Link Sulfo-NHS-Biotin (Pierce Biotechnology) as described in Methods. Aliquots of the cell
extracts containing equal amounts of protein were precipitated with streptavidin-sepharose beads. The bound material was analyzed by Western
blot immunoblotting against total Met. Aliquots of each assay obtained prior to the precipitation were analyzed by Western blot immunoassay
for total Met, with tubulin used as the input control. Molecular weight standards are shown at left.

The results presented in Figures 1 and 2 suggest that
glypican-1 acts as a positive regulator of HGF signaling.
Therefore, we studied the association of Met with lipid raft
membrane domains and the possible role of glypican-1
and HFG in this localization. To accomplish this objective,
WT and glypican-1-deficient myoblasts were either un-
treated or treated with 10 ng/ml HGF, then fractionated in
sucrose density gradients. Figure 3 shows that in untreated
WT myoblasts (control), Met fractionated in lipid rafts
(fractions 5, 6 and 7) and non-lipid-raft fractions (fractions
10, 11 and 12) to almost the same extent. In contrast, in
glypican-1-deficient myoblasts, almost all Met fractionated
in the non-lipid-raft fractions. In both WT and glypican-1-
deficient myoblasts, the basal phosphorylation level of Met
(as shown in Figure 1) was exclusively present in non-
lipid-raft fractions. The distributions of caveolin 1 and so-
dium/potassium ATPase (Na'/K'-ATPase) were used as
lipid raft and non-lipid-raft markers, respectively. These
results suggest that glypican-1 is required to distribute part
of the total HGF receptor to lipid raft domains. After the
treatment with HGF, the proportion of total Met in lipid
rafts vs. non-lipid rafts was augmented in WT myoblasts,
but not in glypican-1-deficient myoblasts. Importantly, in
WT myoblasts, most of the phospho-Met was associated
with lipid raft fractions. In contrast, in the glypican-1-
deficient myoblasts, most of the phospho-Met was as-
sociated with non-lipid-raft fractions. In both WT and
glypican-1-deficient myoblasts, phospho-ERK1/2 and
phospho-AKT were found in the non-lipid-raft fractions.

Next, we evaluated the presence of CD44 in lipid raft
domains and its dependence on glypican-1. Our results
show that the association of CD44 with the lipid raft do-
main is dependent on glypican expression and that this
association is stabilized after pretreatment with HGF
(Figure 3).

The results described above suggest that glypican-1 is
required for the translocation and stabilization of Met to
lipid rafts, where it is activated. To test this possibility,
cells were treated with MPCD, an antifungal drug that se-
lectively extracts cholesterol from the plasma membrane

to disrupt lipid raft structure. WT myoblasts pretreated
with MBDC at two different concentrations (1 nM and 10
nM) were stimulated with increasing concentrations of
HGF for 5 minutes. Figure 4A shows that total Met levels
did not change significantly after treatment, but the HGF-
dependent activation of AKT and ERK was diminished in
myoblasts with disrupted lipid raft domains. In addition,
Figure 4B shows that both Met and caveolin 1 were relo-
calized from lipid rafts to non-lipid-raft fractions after
MBCD treatment.

The results of the present study indicate that Met,
phospho-Met and glypican-1 colocalized in lipid raft do-
mains of the plasma membrane. Moreover, glypican-1
expression and lipid raft integrity were required to sus-
tain the HGF-dependent signaling. Next, we evaluated
whether glypican-1 per se or its presence in lipid raft do-
mains was required to sustain the HGF signaling mediated
by the Met receptor. A chimeric form of HSPG containing
the extracellular domain of rat glypican-1 and the trans-
membrane and cytoplasmic domains of mouse syndecan-
1 (F-GlySyn) was expressed in WT cells. This chimeric
form localized in the non-lipid-raft region of the plasma
membrane as we previously reported [38]. Figure 5 shows
that mock-transfected WT myoblasts induced the activa-
tion of AKT and ERK1/2 in response to HGF. In myo-
blasts expressing the chimeric F-GlySyn, however, both
phospho-AKT and phospho-ERK1/2 levels decreased com-
pared to WT cells. These levels are comparable to levels
found in the glypican-1-deficient myoblasts. The figure
also shows that diminished sensitivity to HGF, which we
had previously observed in the glypican-1-deficient cells,
was restored after reexpressing glypican-1 by transient
transfection with rat glypican-1. Together, these results in-
dicate that glypican-1 must be associated with lipid rafts to
sustain HGF-dependent signaling.

Glypican-1 physically interacts with HGF and Met in lipid
rafts to form an active signaling complex

The results described above suggest that glypican-1 may
interact with Met and HGF in lipid rafts to form the



Gutiérrez et al. Skeletal Muscle 2014, 4:5
http://www.skeletalmusclejournal.com/content/4/1/5

Page 7 of 16

0-

%ekk

154 [ Control
Q
@
2 10-
Q
£
k)
T 5
(=]
(I8

20 ng/ml HGF
AT

Bl HGF 20 ng/ml

WT

Cé

Figure 2 Hepatocyte growth factor-dependent myoblast migration requires glypican-1 expression. (A) Wild-type (WT) C2C12 and C6
myoblasts were seeded onto the upper part of transwell chambers at the same density in serum-free media. The lower chamber contained
serum-free media with or without 20 ng/ml hepatocyte growth factor (HGF). After 8 hours, the cells in the upper part of the filter were scraped.
The cells that had efficiently migrated through the filter were fixed with paraformaldehyde, stained with crystal violet and photographed or as
shown in (B) stained with crystal violet and solubilized in phosphate-buffered saline containing 1% Triton X-100. The absorbance of the detergent
soluble fraction at 595 nm was determined. Values are expressed as mean + standard deviation of three independent experiments. ***P < 0.001

relative to WT control. The migration of WT under control conditions corresponds to a value of 1.0.

ternary complex Met-HGF-glypican-1. To test this possibil-
ity, WT myoblasts were transfected with an empty vector
as the control or with rat glypican-1 (F-Gly) or chimeric F-
GlySyn, both of which contained a FLAG epitope. Forty-
eight hours later, the cells were incubated with or without
20 ng/ml ["*’IJHGF for 5 minutes. The cell extracts in the
presence of phosphatase inhibitors were immunoprecipi-
tated with anti-FLAG antibodies, and the precipitate was
evaluated for total and phospho-Met. Figure 6A shows that,
in the absence of HGF, Met coimmunoprecipitated with
both F-Gly and F-GlySyn almost to the same extent. When

the cells were treated with HGE, the levels of coimmuno-
precipitated Met increased with both forms of glypican-1,
though in a more pronounced way with F-Gly. Interest-
ingly, when the activated form of precipitated Met was
evaluated, F-Gly interacted substantially more than the
non-lipid-raft form of glypican-1 (F-GlySyn) with phospho-
Met. We also found that ['**IJHGF coimmunoprecipitated
almost four times more with F-Gly than with F-GlySyn. As
an immunoprecipitation control, F-Gly and F-GlySyn were
detected with specific anti-glypican-1 antibodies. These re-
sults suggested that glypican-1 physically interacted with
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Figure 3 Met is localized and activated by hepatocyte growth factor in lipid rafts by a glypican-1-dependent mechanism. C2C12 and C6
myoblasts were serum-starved for 6 hours and then treated without (control) or with 10 ng/ml hepatocyte growth factor (HGF) for 5 minutes.
The cells were lysed with 1% Triton X-100 and fractionated by sucrose density gradients (5% to 45%). Twelve fractions were collected, but only
the last ten fractions were analyzed (the lipid raft-enriched fraction started at fraction 4) by immunoblotting for total HGF receptor (Met),
phospho-Met (Tyr 1235/1349), phosphorylated extracellular signal-regulated kinases 1
controls, the presence of the lipid raft membrane protein marker caveolin 1 (Cav 1) and the non-lipid-raft domain marker Na*/K*-ATPase are shown.

and 2 (phospho-ERK1/2), phospho-AKT and CD44. As fractionation

Met and HGF preferentially located in lipid rafts, where the
receptor was stabilized and activated in response to HGF.
To determine if binding of HGF on the myoblast cell sur-
face was modulated by glypican-1, we performed a ligand
binding assay. WT and glypican-1-deficient myoblasts were
incubated with ['***IJHGF at 4°C to avoid endocytosis of the
ligand. The radioactivity associated with low- and high-
affinity binding sites, as well as the remaining radioactivity
in the cell extracts, was determined. Figure 6B shows that
the binding of ['**IJHGF to both low- and high-affinity
binding sites was diminished by 50% in the absence of
glypican-1, suggesting that this lipid raft—associated HSPG
was required to concentrate HGF on the cell surface and
for binding to Met. These results indicate that glypican-1
facilitated the binding of HGF to the Met receptor, enhan-
cing its phosphorylation at lipid raft domains.

Migration of transplanted myoblasts in skeletal muscles is
enhanced by HGF and requires glypican-1

The data described above demonstrates the requirement
of glypican-1 for HGF-dependent signaling and migration.
To test the in vivo role of glypican-1 on HGF-induced

myoblast migration, we subjected the C57BL/10 mice to
intramuscular coinjection of C2C12 or C6 myoblasts to-
gether with HGF in the TA muscles. Seven days after the
transplantation, the muscles were extracted, frozen in li-
quid nitrogen and cryosectioned. Prior to grafting, the
myoblasts were stained with the vital dialkylcarbocyanine
dye, Dil (red fluorescence), to trace their localization in
the muscle cryosections. Figure 7 shows that HGF in-
duced an increase in the number of WT myoblasts that
migrated longer distances (more than 600 um). However,
this effect was prevented in glypican-1-deficient myo-
blasts. These results suggest that glypican-1 expression is
required for efficient in vivo myoblast migration in re-
sponse to HGF.

Discussion

One of the main functions of membrane-associated HSPGs,
particularly for glypicans, is to regulate signaling of several
cytokines, morphogens and growth factors [38,50-53]. It
has been reported that loss of HSPG expression prevents
the cell mitogenic response induced by HGF [54-56], but
the specific roles and mechanisms of the different HSPGs
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Figure 4 Disruption of lipid rafts diminishes hepatocyte growth factor-dependent signaling. (A) C2C12 myoblasts were serum-starved for
6 hours, and during the last hour the cells were treated with or without methyl-3-cyclodextrin (MBCD) at the indicated concentrations. After two
washes with serum-free media, the cells were treated with the indicated concentrations of hepatocyte growth factor (HGF) for 5 minutes. The cell
extracts were analyzed by immunoblotting for total HGF receptor (Met), phospho- and total AKT, phosphorylated extracellular signal-regulated
kinases 1 and 2 (phospho-ERK1/2) and total ERK1/2, and tubulin was used as a loading control. (B) Quantification from two independent experiments
is shown. Statistical significance was assessed using two-way analysis of variance and a Bonferroni multiple-comparisons posttest. *P < 0.05, **P < 0.01,
***¥p < 0.001. (C) C2C12 myoblasts treated with or without 10 mM MBCD for 1 hour as described in (A) were lysed and fractionated in sucrose density
gradients as described in Figure 3. The distributions of total Met and caveolin 1 (Cav-1) were determined by immunoblot analysis. In (A) and (C), the
molecular weight standards are shown at left.

as regulators of HGF-dependent responses have not been 1 appears as an essential cell-surface, low-affinity binding
studied in depth. site for HGE, likely acting as a presenter or facilitator of

In the present report, we show that, in myoblasts, HGF to its high-affinity Met binding site, where it is cofrac-
glypican-1 located in lipid raft membrane domains was  tionated with the known HGF coreceptor CD44 [34].
required for maximum HGF-dependent signaling and cell ~ Glypican-1, Met and HGF formed an active signaling tern-
migration in vitro and in vivo. We also show that glypican-  ary complex in lipid raft membrane domains. Whether
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Figure 5 Glypican-1 is required to sustain the hepatocyte growth factor-dependent signaling in lipid rafts. \Wild-type (WT) myoblasts
were transiently transfected with an empty vector as the control or with a non-lipid-raft form of glypican-1 containing the extracellular domain of
rat glypican-1 and the transmembrane and cytoplasmic domains of mouse syndecan-1 (F-GlySyn) [36]. C6 myoblasts were transiently transfected
with an empty vector as the control or with rat glypican-1 (C6-Gly). Forty-eight hours after transfection, the cells were serum-starved for 6 hours and
then treated with the indicated concentrations of hepatocyte growth factor (HGF) for 5 minutes. (A) The cell extracts were analyzed by immunoblotting
for total HGF receptor (Met), phospho- and total Akt and phosphorylated extracellular signal-regulated kinases 1 and 2 (phospho-ERK1/2) and total
ERK1/2. Glypican-1 core protein levels after heparitinase digestion of endogenous and both transfected forms of glypican-1 were detected by using an
anti-glypican-1 antibody. Tubulin levels were used as loading controls. (B) Quantification from two independent experiments is shown. Statistical
significance was assessed using two-way analysis of variance and a Bonferroni multiple-comparisons posttest. *P < 0.05, **P < 0.01.

phospho-Met is relocated from non-lipid-raft to lipid raft
domains in response to HGF or whether Met is directly ac-
tivated in lipid rafts, where it is stabilized, are still not
known. Chimeric non-lipid-raft glypican-1 (F-GlySyn) also
coimmunoprecipitated with Met, but not with the active
form of the receptor or with HGEF, indicating that loca-
lization of glypican-1 in lipid raft domains was unnecessary
for the interaction between Met and the extracellular part
of glypican-1, but was required for binding of HGF and
subsequent receptor activation.

The participation of lipid rafts as signaling platforms
to facilitate interaction of the required elements to acti-
vate a signaling pathway has been reported for different
receptor tyrosine kinases, such as the platelet-derived
growth factor, TrkA/nerve growth factor and insulin re-
ceptors. After ligand activation, MAPK and phosphoino-
sitide 3-kinase (PI3K) signaling mediators are recruited
to lipid rafts, where they are activated [57-60]. The
same mechanism of action has also been reported for G

protein—coupled receptors, including -adrenergic, neuro-
kinin 1 receptor and muscarinic cholinergic receptors
[61-64]. Lipid rafts can also act as a platform where recep-
tor signaling is turned off, such as in the case of serine-
threonine kinase transforming growth factor p [65] and
tyrosine kinase epidermal growth factor receptors, which
are activated in lipid rafts, but rapidly relocalized to non—
lipid rafts to de-activate downstream signaling [66]. We
previously reported that glypican-1 in lipid rafts acted as a
negative regulator of FGF-2 signaling, sequestering the
growth factor in these domains away from their transdu-
cing receptors [38]. Our present results show that, upon
ligand binding, Met is recruited to lipid rafts to activate
MAPK, ERK1/2 and PI3K/AKT pathways. This process
required the presence of structured lipid raft membrane
domains as well as glypican-1 in these domains to sustain
the HGF-dependent signaling. However, these results did
not eliminate the possibility of other Met-dependent func-
tions in non-lipid rafts.
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Figure 6 Glypican-1 in lipid rafts coimmunoprecipitates with the activated form of Met and regulates hepatocyte growth factor
binding to low- and high-affinity cell surface binding sites. (A) C2C12 myoblasts were transfected with rat glypican-1 (F-Gly) or the non-lipid-raft
chimeric glypican-1 (F-GlySyn), as described in the Figure 5 legend. F-Gly and F-GlySyn contained a FLAG epitope at the amino terminus.
Forty-eight hours after transfection, the cells were serum-starved for 4 hours and then treated with or without 20 ng/ml ['**[JHGF for 5 minutes.
The cell extracts were incubated with anti-FLAG M2 Affinity Gel for 3 hours at 4°C, and, after several washes, the beads were incubated with
heparitinase and chondroitinase ABC for 8 hours. The immunoprecipitated (IPP) bound material was eluted with protein loading buffer and
analyzed by Western immunoblotting for total hepatocyte growth factor (HGF) receptor (Met), phospho-Met and glypican-1. The membranes

Extract

were exposed to a phosphorimager to detect ['*’IJHGF. (B) C2C12 and C6 myoblasts were serum-starved for 4 hours and then treated with or
without 10 ng/ml ['*°[JHGF for 2 hours at 4°C. After several washes in ice-cold binding buffer, ['**[JHGF was eluted with high salt and acid to
determine low- and high-affinity binding sites, respectively. Counts per minute (com) were determined by y counting and corrected for protein
content in cell extracts. Statistical significance was assessed by two-way analysis of variance and a Bonferroni multiple comparisons posttest. **P < 0.01.

HGF is involved in many different processes in which
both cell growth and cell migration are required, such as
in embryonic development, tissue repair and organ re-
generation [67]. In particular, the roles of HGF and Met
for muscle development, differentiation and regeneration
have been reported [7]. During limb muscle develop-
ment, migratory muscle precursor cells delaminate from
the dermomyotome, an epithelial structure that develops
from somites, reaching their specific destination in the
limb buds [68-70] in a process dependent on HGF and

Met expression [6-8]. In the present study, we show that
glypican-1 was required for the migration of myoblasts
in response to HGF, both in vitro and in vivo. In vitro
glypican-1-deficient myoblasts were almost unresponsive
to HGF as a chemoattractant in the Boyden chamber as-
says, in contrast to WT myoblasts, which migrated exten-
sively through the membrane toward the HGF-containing
media. The migration capacity toward other chemoattrac-
tants did not appear hampered, because no significant dif-
ferences were observed when both types of cells were
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Figure 7 Hepatocyte growth factor-dependent migration of myoblast in vivo requires glypican-1 expression. (A) Wild-type (WT) or C6
myoblasts (500 x 10%), prelabeled with the vital dialkylcarbocyanine dye, Dil (red fluorescence), and suspended in 30 pl of physiological serum with
or without 10 ng of carrier-free hepatocyte growth factor (HGF) were transplanted into the left and right tibialis anterior (TA) muscles, respectively,
of 3-month-old C57BL/10 mice under anesthesia. One week later, both TA muscles were processed for cryosectioning. Concentric circles with annuli

200 um from each other were superimposed on selected muscle cross-section images. The cells were counted under an inverted microscope equipped
for epifluorescence. (B) The number of the cells that migrated more than 200 um were considered the total migrating cells, and the percentages of cells
that migrated more than 600 um were calculated. The migration of untreated WT myoblasts was corrected to 100%. Values are expressed as mean + SD

J

challenged to migrate toward 10% FBS (data not shown).
We determined the role of glypican-1 in myoblast mi-
gration in vivo in response to HGF by intramuscular
coinjection of WT or glypican-1-deficient myoblasts in
the presence or absence of the growth factor. In vivo
myoblast migration was improved by coinjection with
HGE, particularly in WT cells, compared to the slight mi-
gratory effect observed with glypican-1-deficient myoblasts.
These results show that in vivo migration of myoblast

expanded in vitro could be improved by coinjection with
HGEF. In addition, this effect required the expression of
glypican-1 in the myoblast plasma membrane.

This result is very promising, because one of the main
problems associated with stem cell therapies for the treat-
ment of patients with muscular dystrophies is the poor
migration of the transplanted cells. As a result, therapy
with intramuscular injection of myoblasts or SCs in sev-
eral clinical trials has been mostly unsuccessful [71-73].
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Based upon our results, the use of fluorescence-activated
cell sorting with higher expression of glypican-1 and/or
coinjection with HGF to improve efficiency needs to be
carefully evaluated.

As previously mentioned, HSPGs are essential compo-
nents required for the myogenic inhibitory signaling of
FGF-2 [28,30-33,74-76] and HGF [3,77,78]. During dif-
ferentiation, expression of all syndecans was downregu-
lated, which is consistent with a reduction in sensitivity
to the inhibitory effect of FGF-2 [32,38,79]. In contrast,
the expression of glypican-1 remained constant, being
the main cell surface HSPG present during myogenesis
[35,39]. In addition, during muscle regeneration, expression
of glypican-1 increased and was temporarily and histologi-
cally related to the newly regenerating myofiber expression
of embryonic myosin [80]. However, the exact role of
glypican-1 during this process has not been addressed to
date. Glypican-1-knockout mice were almost indistinguish-
able from WT mice in size, fertility, internal anatomy and
lifespan, with the exception of the brain, which was notice-
ably smaller [81]. This suggests that glypican-1 is required
in mammals for brain development, but not for other
tissues, such as skeletal muscle. To further elucidate the
results of the present study, it would be informative to
evaluate the skeletal muscle regeneration process in
glypican-1-null mice.

Glypican-1 is required for terminal myogenesis, acting
as a repressor of FGF-2 [38]. This can be explained by
the sequestration of FGF-2 by glypican-1 in lipid rafts,
away from FGF-2 receptors and syndecans that are lo-
cated in non-raft domains. As we have shown, however,
glypican-1 positively regulates HGF-mediated signaling
by recruiting or stabilizing Met in lipid raft domains
where it was activated, with consequential triggering of
downstream targets. Reduction of Met expression during
the myogenic differentiation process (data not shown) [82]
therefore seemed to circumvent the myogenic inhibitory
effect of HGF in spite of the constitutive expression of
glypican-1 [35,39]. All of these changes switched the bal-
ance from a proliferative, migratory and antimyogenic state
in response to FGF-2 and HGF to a promyogenic response
whereby both muscle inhibitory signals decreased, thus
allowing differentiation.

Immediately after injury, low concentrations of HGF
(2 to 3 ng/ml) are released from ECM reservoirs [83-85]
in conjunction with the local release of nitric oxide. These
are the first cues involved in the activation (that is, exit
from quiescence) of SCs, which then proliferate to form
new fibers or repair the destroyed ones [10,84,86]. To
maintain their regenerative potential, many proliferating
SCs return to quiescence, repopulating the SC niche to
maintain a progenitor pool, which will be activated to re-
pair the muscle in response to a new injury [87-89]. This
capacity to repopulate the quiescent SC pool is one of main

Page 13 of 16

features of stem cells. It is explained by asymmetric cell
division involving some daughter cells, which continue the
differentiation pathway, whereas other cells exit the cell
cycle and return to quiescence [90,91]. HGF concentra-
tions above 20 ng/ml induced the quiescence of primary
myogenic cells. This effect was reversible because treat-
ment with low concentrations of HGF could rescue the
proliferation of myogenic cells after high HGF-induced
quiescence [77].

It would be interesting to determine whether glypican-
1 has a potential role in the control of SC sensitivity to
extracellular HGF and to define which SCs will continue
to form new muscle and which will exit the cell cycle in
asymmetric cell division to maintain the pool of muscle
stem cells. Besides its association with lipid rafts in the
cell membrane, glypican-1 is also endogenously proc-
essed to a soluble form that is incorporated into the
ECM [35,38,80], where it can act as a reservoir for HGF
and other heparin-binding growth factors that can be re-
leased upon an injury to activate SCs. More accurate future
studies designed to determine the control mechanisms of
glypican-1 and Met expression between daughter cells dur-
ing asymmetric cell division, as well as the role of glypican-
1 during the muscle regeneration process, are therefore
necessary.

Conclusion

Glypican-1 in lipid raft membrane domains is required for
maximum HGF-dependent signaling and myoblast migra-
tion in vitro and in vivo.
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